목록연구일지 (66)
Qaether 연구일지
라그랑지안 및 작용 원리 기반 재정식화0. 목표위상 진동자 \(\phi_i(\tau)\) 또는 복소 파동함수 \(\psi_i(\tau)\) 에 대해 작용 원리 (Action Principle) 기반의 동역학 정식화위상 차 기반 결합 포텐셜을 포함한 라그랑지안 \(\mathcal{L}\) 구성보존 법칙, 에너지 흐름, 위상 재배열의 정보론적 의미 부여 1. 상태 변수 재확인Qaether 노드 i: 위상 \(\phi_i(\tau)\) , 복소 파동함수 \(\psi_i(\tau) = A_i e^{i\phi_i}\)결합 행렬: \(A_{ij} \in \{0,1\}\)위상차 양자화 조건은 Hamiltonian에서 강제됨 2. 위상 진동자 라그랑지안2.1 라그랑지안 \(\mathcal{L}_\phi\) 정의:$..
아래는 현재까지 진행한 정의, 구축, 수식화, 검증한 Qaether 이론의 전체적 검증 체계를 분야별로 정리한 것입니다.이론적 정합성, 수학적 성립성, 물리적 구현 가능성의 세 축에서 주요 검증 결과를 포괄적으로 재정리합니다.Qaether 이론: 지금까지의 검증된 이론 정리1. 공간 격자 구조와 방향성* FCC 격자 기반 모델 유도12개 고정 방향 \(D_{\mathrm{FCC}}\)을 통한 결합 방향 이산화\(\vec{r}_{ij} / \ell_p \in D_{\mathrm{FCC}}\) 조건으로 거리 개념이 관계적으로 정의됨FCC 결합 기준으로 정렬 함수 \(f_{ij} = |\vec{Z}_i \cdot \vec{d}_{ij}| \cdot |\vec{Z}_j \cdot \vec{d}_{ji}|\) 도..
1. 공간 구조 및 상태 변수1.1 격자 구조기본 구조는 플랑크 길이 \(\ell_p\) 스케일의 이산 FCC 격자허용 결합 방향:\(D_{\mathrm{FCC}} = \{ \vec{d}_1, \dots, \vec{d}_{12} \} \subset \mathbb{R}^3,\quad |\vec{d}_k| = 1\) 1.2 Qaether 상태 함수각 Qaether ii의 상태:$$\Xi_i = (S_i,\ \vec{Z}_i,\ \phi_i), \quad S_i \in \{0,1\},\ \vec{Z}_i \in \mathbb{S}^2,\ \phi_i \in [0, 2\pi)$$\(S_i\): 활성 여부\(\vec{Z}_i\): 내재 회전축\(\phi_i\): 위상 변수 (관측 불가, 위상차만 관측 가능) 1...
수학모델 구성1. Void model FCC 단위셀 부피:\[V_{\rm FCC}=a^3=(\sqrt2\, \ell_p)^3=2\sqrt2\, \ell_p^3\]Qaether 4개 부피:\[V_Q=4\!\times\tfrac{4\pi}{3}(\tfrac{ \ell_p}{2})^3=\tfrac{2\pi}{3}\, \ell_p^3\]최소 Void 부피(완전 결합, \(m=12m\)):$$V_{\min} =V_{\rm FCC}-V_Q =\Bigl(2\sqrt2-\tfrac{2\pi}{3}\Bigr) \ell_p^3$$결합 수 $$m=\tfrac12\sum_{i\neq j}A_{ij}, 0\le m\le12$$결합수에 따른 Void 부피 $$𝑉_{void}(m)= 𝑉_{FCC} - 𝑉_𝑄 + Δ𝑉(𝑚..
Qaether: 전체 수학 모델 정리 1. 기본 설정공간-시간: FCC 격자 (Face-Centered Cubic lattice), 격자 간격 \(\ell_p\) (플랑크 길이)시간 이산화: 최소 시간 간격 \( T_{\min} = \ell_p / c_v \)기본 변수: 스핀 위상 \( \phi_i \in [0,2\pi) \) (셀 \(i\)), Void 부피 편차 \( V_i \) (셀 \(i\)) 2. 미시 Hamiltonian (1차 원리)셀 에너지: \[ \mathcal{H} = - J \sum_{\langle ij\rangle} \delta_{S_i, -S_j} + \frac{1}{2} K \sum_i V_i^2 \]\(J\): 스핀 결합 강도 (플랑크 단위)\(K = 4J/\alpha^2\):..
스핀대칭성이 있는 축을 중심으로 수직인 방향으로 결합한다는 가정은 다음과 같은 문제가 있다기존 모델의 한계 (스핀축 고정)문제점:스핀축이 고정되어 있으므로, FCC 격자의 특정 방향으로만 결합이 발생합니다.이는 공간의 이방성(anisotropy)을 초래하며, 연속 극한(\(l_p --> 0\))에서 로렌츠 대칭성 위반으로 이어집니다.예시:스핀축이 z-축으로 고정되면 xy-평면의 4개 이웃만 결합에 참여하며, z-축 방향의 결합은 무시됩니다. 이 문제는 스케일업 된다고 하더라도 로렌츠 대칭성에 위배되는 문제가 생긴다. 따라서 이전 가정처럼 결합가능 방향으로만 스핀이 회전한다로 가정을 수정해야 할 것 같다. 그런 경우는 연속극한에서 확실히 로렌츠 대칭성을 만족한다.