목록위상 (7)
Qaether 연구일지
1. 사슬(chain)과 경계(boundary)1.1 셀 복합체의 기본 아이디어격자나 다면체를 다룰 때,0–셀 = 점(vertex)1–셀 = 선분(edge)2–셀 = 면(face)3–셀 = 부피(volume)이런 식으로 “조각”을 세는 게 자연스럽다.이 조각들을 정수 계수로 선형 결합한 것이 사슬(chain)이다.예를 들어,\[c = e_1 + e_2 - e_3\]는 세 개의 엣지를 더하거나 빼서 만든 1–사슬.‘–’ 부호는 방향을 바꿨다는 뜻. 참고로 점은 방향이 없고 면의 경우는 경계의 회전방향으로 방향을 결정하고 부피의 경우는 기본 축으로 결정. 1.2 경계 연산자 \( \partial \)각 셀은 자신의 “경계”를 갖죠.선분(edge)의 경계는 두 끝점.\[\partial e = v_\text{e..
표기·가정 (공통)\( G=(V,E) \): FCC 최근접결합 그래프 (주기경계).2–셀 \( F \):사면체의 삼각면 ( \(\Delta\) )octahedron의 사각면 ( \(Q\) ) — 대각 사각 루프.사슬군 및 경계사상\[C_2=\mathbb Z^F,\quad C_1=\mathbb Z^E,\quad \partial_2:C_2\to C_1.\]각 링크 \( e\in E \)에 위상차 \( \phi_e\in\mathbb R/2\pi\mathbb Z \)라고 하면 위상사상 \( \Phi:C_1\to\mathbb R/2\pi\mathbb Z \)는\[\Phi(\operatorname{im}\partial_2)=0 \quad \text{ (모든 2–셀 경계의 위상합이 0) }\]한 엣지 \( e \)의..
플라켓의 위상차 합이 고정되고 각각의 위상차가 이산화되어 있을 경우 3가지 순환열 동치류가 존재한다는 증명이다.이 증명은 SU(3)에서 쿼크의 색이 3가지인것을 표현하기에 적합해서 중요한 구조로 보고 있다.더해서 이 쿼크류의 3가지 색을 각각 다른 순환열과 결합하여 정팔면체 결합까지 만들어 바리온 구조를 설명하려고 하고 있다.다만 현재 이 논문은 거기까지 간 내용은 아니고 수학적으로 존재성을 입증할 뿐이다. 본 논문을 genodo에서 DOI 받아서 researchgate에 올렸다. 수학적으로 증명만 하면 되서 엄밀하게 증명하였다. https://www.researchgate.net/publication/396437920_Counting_Distinct_Plaquette_Phase_Configuration..
A3. 질량과 중력의 창발: 결합 압력 모델셀 면적 변수전체 빈 경계면 면적: \(\mathfrak A_s \approx \pi l_p^2\) (한 Qaether 셀의 외부 반사 가능한 면적)결합당 막히는 면적: $$\mathfrak A_b \ll \mathfrak A_s \; \Longrightarrow\; \alpha \;\equiv\; \frac{\mathfrak A_b}{\mathfrak A_s} \ll 1$$남은 반사 면적셀 \(i\)가 \(m_i\)개 결합했다면 $$\mathfrak A_i(m_i) = \mathfrak A_s - m_i\,\mathfrak A_b = (1 - \alpha\,m_i)\,\mathfrak A_s$$FCC 격자 최대 \(m_i=12\)에서도 \(\alpha m_i\..
* 본 Qaether 이론은 실험적으로 검증되지 않은 토이이론임을 미리 밝힙니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는 순수 무(無)를 뜻한다. 좌표·거리·시공간 구조를 일절 제공하지 ..
Qaether 시스템의 경우는 결합 경로를 통해서 이산경로적분을 해야한다. 1. 이산 구조에 자연스러운 수식화Qaether가 FCC 격자의 이산 점 위에 존재하고, 결합(link)들이 핵심 동역학 단위라면, 연속적 시공간의 작용량(action) 대신 “결합 경로(path)”를 따라 정의된 이산 작용량이 직관적입니다. 여기서 \(L_{ij}\)는 링크 \(i\to j\)를 통해 전파되는 위상 동역학과 스핀 정렬, 포텐셜 에너지 항을 모두 포함하는 국소 이산 라그랑지안입니다.$$S[\{\phi\},\{A\}] \;=\;\sum_{\langle i,j\rangle} \;L_{ij}\bigl(\phi_i,\phi_j,A_{ij}\bigr)\,\Delta\tau$$ 2. 경로적분(formal path integr..