목록위상차 (2)
The Qaether Log
FCC 격자에서 링크 위상차의 \(\pi/6\) 양자화 — 완전 증명정리(주장)FCC 최근접(contact) 그래프 \(G=(V,E)\) 위의 위상장 \(\{\phi_i\}_{i\in V}\)와 링크 위상차 \(\Delta\phi_{ij}=\phi_j-\phi_i\in\mathbb R/2\pi\mathbb Z\)에 대해, 아래의 에너지 함수를 갖는 평형(정지점)에서$$ \boxed{\ \Delta\phi_{ij}=m_{ij}\,\frac{\pi}{6}\quad(m_{ij}\in\mathbb Z)\ } $$가 모든 \((i,j)\in E\)에 성립한다. 따라서 잔여 위상 자유도는 \(U(1)\big/\mathbb Z_{12}\simeq C_{12}\)로 축소된다. 0. 설정과 표기정점 \(i\in V\),..
FCC 격자에서 위상차가 \(\displaystyle\pi/6\) 단위로 양자화된다는 완전 증명핵심 결론: 모든 링크 \((i,j)\)의 총위상차는 $$ \boxed{\;\;\Delta\phi_{ij}^{\rm tot}=m_{ij}\,\frac{\pi}{6}, \qquad m_{ij}\in\mathbb Z\;}$$격자 전체의 위상 자유도는$$\displaystyle U(1)\big/\mathbb Z_{12}\,\simeq\,C_{12}$$로 축소된다. 0. 전제와 기호기호 의미\(l_p\)구(셀) 사이 중심‑간 거리 = 진동 파장\(\phi_i\)셀 \(i\)의 이산 위상$$\chi_{ij}=e^{i\Delta\phi_{ij}^{\rm tot}}$$링크 변수$$\chi_\ell=\prod_{(a..