목록전하 (9)
Qaether 연구일지
9. 전하 \(Q\), 이소스핀 \(T_3\), 하이퍼전하 \(Y\)의 통합 정의색전하 \(\kappa\)와는 독립적으로, 각 플라켓 모드(쿼크/렙톤)에 대해 전하 \(Q\), 이소스핀 \(T_3\), 하이퍼전하 \(Y\)를 정의한다.(a) 전하 단위전자기 전하 대신\[q_0 := \frac{e}{2}\]를 기준 단위로 쓰고, 다음과 같이 둔다.\[\hat Q := \frac{2Q}{e},\qquad Q = \frac{e}{2}\hat Q\](b) 표준모형 관계식의 재정식화\[Q = T_3 + \frac{Y}{2}\quad\Longleftrightarrow\quad\hat Q = 2T_3 + Y\quad\Longleftrightarrow\quadY = \hat Q - 2T_3.\]따라서 모든 Qaethe..
Qaether lattice EM 이론 = FCC 격자 위 \(U(1)\) 링크 위상 \(a_e\)의 동역학 + Qaether 전하 \(Q_i\)를 소스로 쓰는 Maxwell 이론 1. 자유도 (Degrees of Freedom)(1) 사이트 변수 – SU(2) 쿼터니언각 Qaether 셀:\[q_i \in SU(2) \cong S^3\]이 안에 스핀(방향) + 내부 위상 정보 포함.(2) 링크 변수 – SU(2) 상대위상접촉하는 두 셀 \(i,j\):\[U_{ij} = q_i q_j^{-1} \in SU(2)\](3) U(1) 축 방향 프로젝션 – EM 위상국소 축 \(m_i\) 따라 ‘t Hooft형 투영:\[u_{ij}= \frac{\mathrm{Tr} \big(\frac{1+m_i\cdot\sig..
[Pre-print version] We present a unified lattice framework in which spin, electric charge, and color charge emerge from the topology of the face–centered cubic (FCC) lattice. The coexistence of triangular and square minimal loops in the FCC skeleton provides the minimal structure supporting both SO(3) parity and U(1) phase. A quaternionic SU(2) field at each site encodes spin orientation and loc..
A7. 전하(Electric Charge) 정의 — 기하학적 스핀의 산술(Arithmetic)1. 핵심 원리전하는 입자를 이루는 3차원 위상 구조(정사면체·정팔면체)의 꼭짓점들에 놓인 Qaether의 SU(2) 스핀 상태로부터 U(1) 성분을 산술 합하여 얻는 창발적 내부량이다.전하는 외부에서 “붙는 숫자”가 아니라, 최소단위 스핀의 방향성·위상이 만드는 총합 결과다. 이 이론에서 유효 쿼크는 ‘플라켓(사각 루프)’, **바리온은 ‘서로 직교하는 플라켓 3장으로 닫힌 정팔면체’**이다. 전하값은 해당 객체를 이루는 꼭짓점들의 U(1) 방향 프로젝션의 합으로 정해진다. 따라서 쿼터니안 하나는 전하기여를 갖게되며 플라켓은 분수전하를 갖는다.(배경) 스핀 자유도와 루프 홀로노미(SU(2)–SO(3) 이중피복)..
쿼크에 대하여v1.4 방식의 색전하 정의가 선택된 이유는 위상차의 순환열 동치류에 의해 플라켓이 가질 수 있는 조합이 3개임에도 불구하고 (단, 위상차가 모두 다를 경우) 분수 전하를 만들 방법을 찾지 못했다. 더해서 플라켓 3개를 결합해서 정팔면체를 구성할때 한개 순환열의 동치류를 이용해서 결합 조건을 만족하는 경우는 가능했지만 다른 순환열을 끼워넣으면 결합조건을 만족하지 않았다. 플라켓을 유사쿼크로 뒀을 경우 그 부분이 문제가 되어 정팔면체를 유사쿼크로 바꿨던 것이다.그런데, 위상차의 principal을 결정하는데 에러가 있어서 이를 \((0,2\pi]\)로 수정하였더니 다음과 같이 정팔면체 입체 폐합이 가능한 플라켓의 종류가 늘어났고 이 플라켓간의 상호 결합이 가능해져서 이전에 되지 않았던 교차 결..
A7. 전하(Electric Charge) 정의 — 기하학적 스핀의 산술(Arithmetic)1. 핵심 원리전하는 입자를 이루는 3차원 위상 구조(정사면체·정팔면체)의 꼭짓점들에 놓인 Qaether의 SU(2) 스핀 상태로부터 U(1) 성분을 산술 합하여 얻는 창발적 내부량이다.전하는 외부에서 “붙는 숫자”가 아니라, 최소단위 스핀의 방향성·위상이 만드는 총합 결과다. 이 이론에서 유효 쿼크는 ‘서로 직교하는 플라켓 3장으로 닫힌 정팔면체’이다. 전하값은 해당 객체를 이루는 꼭짓점들의 U(1) 방향 프로젝션의 합으로 정해진다. 따라서 쿼터니안 하나는 전하기여를 갖게되며 플라켓은 분수전하를 갖는다.(배경) 스핀 자유도와 루프 홀로노미(SU(2)–SO(3) 이중피복)는 A5에 준함. 2. 정의의 계층 구조(..