목록qaether (91)
The Qaether Log

* 본 Qaether 이론은 실험적으로 검증되지 않은 가설임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 반지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는..
색전하 정의의 개정 아이디어 (Qaether 이론 A7 수정본)1. 문제점 (기존 정의의 모순)Cartan 투영이 항상 0링크를 \(\lambda_{1,4,6}\) 축에만 정렬시키면, Cartan \(\lambda_{3,8}\)에 대한 투영은 항상 0 → 색전하가 사라짐에도 불구하고 메손 색전하를 주장한 부분이 자기모순.게이지 불변성 부재단순합 \(\sum \tilde X\)는 국소 SU(3) 게이지변환에 따라 회전하므로 관측가능량이 아님. 색전하는 원칙적으로 가우스 법칙이나 Wilson loop로 정의해야 함.8차원 임베딩 불충분\(\lambda_{1,4,6}\) 세 방향만으로는 SU(3) 8차원 자유도를 모두 만들 수 없음. λ₂, λ₅, λ₇, λ₃, λ₈ 성분이 생성되는 메커니즘이 불명확. 2. ..
정리 (색의 보편성)플라켓을 구성하는 네 개의 위상 정수 ({a, b, c, d})가 서로 다를 때, 이 숫자들의 순서 있는 배열(순열)을 정사각형의 꼭짓점에 배치하는 집합에 정사면체 대칭군 (\(D_4\))를 작용시키면, 그 배열들은 항상 정확히 3개의 동치류(궤도, Orbits)로 나뉜다. (실제 4개의 위상차를 위상 정수로 정규화)이 정리는 특정 숫자 조합(예: (0,2,4,6))에만 국한된 우연한 결과가 아니라, '네 개의 서로 다른 객체'라는 조건만 만족하면 항상 성립하는 보편적인 수학적 사실임을 보이는 것이 중요하다. 수학적 증명증명을 위해 군론(Group Theory)의 강력한 도구인 번사이드 보조정리(Burnside's Lemma)를 사용하겠다. 이 정리는 어떤 집합에 군이 작용할 때 궤도..

Qaether ↔ 윌슨 격자 게이지 이론의 1 : 1 대응격자 간격 \(a=2l_p\), \(U_{ij}=\Delta q_{ij}\) 단계Qaether 정의윌슨 격자 QCD/QED 대응핵심 근거① 링크 변수두 셀의 상대위상 \(\Delta q_{ij}=q_jq_i^{-1}\in SU(2)\) 및 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)윌슨 링크 $$U_{ij}\in G$$국소 변환 $$U_{ij}\to g_jU_{ij}g_i^{-1}$$Qaether 링크와 동일한 변환 법칙② 플라켓(곡률)$$F_{\Box}=\prod_{\ell\in\Box}\Delta q_\ell$$Wilson loop $$U_{\Box}=\prod_\ell U_\ell$$정의가 완전히 일치③ 게이지 작..
A9. 광자 (Photon)의 정의 ― U(1) 무질량 게이지 집단의 위상 파동 모드(기존 A1 – A8에 이어 붙이면 됩니다.)항목Qaether 변수/구성 물리적‧수학적 의미 표준 이론과의 대응기본 자유도U(1) 링크 위상 $$\displaystyle\Delta w_{ij}=e^{\,i\frac{\Delta\phi_{ij}}{2}}$$셀 i,j 사이의 상대 내부 위상각 \(\Delta\phi_{ij}\)전자기 퍼텐셜 \(A_\mu\)의 격자판광자장 정의작은 진동 \(\displaystyle\delta\phi_{ij}\ll1\) 만을 취해 $$\displaystyle E_{ij}\equiv\frac{\delta\phi_{ij}}{2}$$U(1) 위상 파동의 선형화된 국소 전기장맥스웰 장 강도 \(F_{..
1. 진공 에너지 밀도 \(V_G\) 구하기A3에서 정의된 국소 유효 압력 모델에 따르면,$$V_G(\phi,m) \;=\; p_0\,(1 - \alpha\,m)\,\sin\!\Bigl(\tfrac{\phi}{2}\Bigr)$$여기서$$p_0 = 2\,u_{\phi,0} = \frac{3\hbar c}{2\,l_p^4}$$입니다 .진공 상태에서는 격자 결합 수 \(m_0\)와 위상각 \(\phi_0\)가 안정화를 위해 최소화되어야 하지만, \(\alpha\ll1\)이므로 \((1-\alpha m_0)\approx1\)로, 또한 최댓값을 가정하면 \(\sin(\phi_0/2)\approx1\)이라 근사할 수 있다.따라서$$\rho_{\rm vac} \simeq p_0 = \frac{3\hbar c}{2\,..