목록플라켓 (10)
The Qaether Log
* 본 Qaether 이론은 실험적으로 검증되지 않은 토이이론임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는..
제목부터가 물리학자 입장에서 보면 상당히 도전적인 제목이라 혹시 제목을 보고 읽고 계시다면 다시한번 언급한다. Qaether 이론은 Toy 이론으로 실험적으로 검증된 적이 없다. 다만, 작자의 머릿속에 떠오른 어쩌면 허무맹랑한 아이디어를 ChatGPT의 도움을 얻어 수학화하다보니 여기까지 오게 되었다. 보기에 무리하다고 느껴지고 너무 점프한것 같다고 느껴져도 어떤 SF 소설의 배경이나 유니버스의 기초정도로 여겨주길 바란다. Qaether 규약(순환열→색→맛→쿼크/바리온·메손→트라이앵글릿→정사면체→렙톤→전하·스핀)을 그대로 채택한 상태에서, IR(연속) 한계에서 SU(3)×SU(2)×U(1) 게이지 이론이 어떻게 유도되는지를 단계별로 정리.0. 전제·규약(요약)격자: FCC, 간격 \(a=l_p\).노드(..
“순환열 → 색 → 맛(정팔면체) → 쿼크 → 바리온/메손 → 트라이앵글릿 → 정사면체 → 렙톤 → 전하·스핀”까지, 기본 대칭을 순환열의 \(D_4\)로 하여 규약을 일관된 수학 기호와 정의로 정리한다. 0. 전제·기호격자: FCC, 격자 간격 \(a=l_p\). (v1.4에서 부터 반영 예정)노드(사이트) \(i\): 단위 쿼터니안 \(q_i\in SU(2)\) (로터/스핀자 자유도).링크 위상: \(\Delta\phi_{ij}=\phi_j-\phi_i\).짧은 루프 잠금(삼각·사각)$$\Delta\phi_{ij}\in\tfrac{\pi}{6}\mathbb Z,\qquad \sum_{(ij)\in \ell}\Delta\phi_{ij}\equiv \Phi_\ell=2\pi n_\ell\ (n_\ell\..
안에 태그를 넣어 이미지를 배치합니다 -->0. 핵심 요약링크 위상차 양자화: 모든 링크 위상은 \(\Delta\phi_{ij}=m_{ij}\,\pi/6\) (정수 \(m_{ij}\))로 양자화되며, 격자의 위상군은 \(U(1)/\mathbb Z_{12}\simeq C_{12}\). 짧은 루프(△, □)가 이 조건을 동역학적으로 강제한다.플라켓 플럭스 부문 고정: 한 플라켓의 네 링크 정수 \(\{n_i\}\)가 \(\sum n_i=12\)인 부문을 고정한다(정수합, not mod). 이 부문에서만 미세배치(순환열)가 물리적 라벨로 남는다.순환열 3종 = 색 3종: 네 값이 서로 다를 때, 플라켓을 따라 읽은 24개의 원순열을 정사각 판의 디헤드럴 대칭 \(D_4\)(회전·반사)로 나누면 정확히 3개의..
1. 기본 전제와 변수정점 자유도: 단위 쿼터니안 \(q_i\in SU(2)\).링크: \(\Delta q_{ij}=q_j q_i^{-1}\).Hopf 섬유의 U(1) 위상각 \(\phi_i\)를 뽑아 \(w_i=e^{i\phi_i/2}\), 링크 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)SU(3) 링크는 정적 색 배경 + 동적 글루온 형태:$$\Xi_{ij}=\exp\!\big[i\,C_{ij}\!\cdot\! \lambda\big]\,\exp\!\big[-ig_s A_{ij}\big]$$여기서 \(C_{ij}\)는 플라켓 미세배치(색 궤도; 아래 2.3)로부터 오는 Cartan 공간 벡터, \(A_{ij}\)는 글루온.자율형(재매개 불변) 작용의 시간자(라프스) \(E(..
아래 목록은 공개된 실험·관측 데이터의 재분석만으로 Qaether 이론의 핵심 정의·예측을 시험하는 방법을 쉬운 것 → 어려운 것 순서로 정리한 것이다. 각 항목은 핵심 예측 · 데이터 후보 · 분석 레시피 · 지지/기각 신호로 요약했다.FCC 격자 위상차 \( \pi/6 \) 양자화 검증핵심 예측: 모든 링크 위상차가 \( \Delta\phi_{ij}=m\,\frac{\pi}{6}\;(m\in\mathbb Z) \), 위상군 \(C_{12}\).데이터 후보: (i) FCC 결정의 중성자/엑스선 산란(phonon/magnon 위상), (ii) FCC 재료 ARPES(Berry/Bloch 위상).분석 레시피: 삼각·사각 루프 위상합 산출 → \(30^\circ\) 모듈러 언랩 → \(\pi/6\) 격자에 ..