목록플라켓 (18)
Qaether 연구일지
[서술문제]다음 조건을 바탕으로 FCC 격자의 기하학적 구조만으로 링크 위상차가 양자화됨을 증명하고 그 양자화 단위를 구하라.조건격자는 FCC(Face-Centered Cubic) 구조를 갖고 주기경계조건을 갖는다.격자의 기본 객체는 site(격자점) 과 link(격자점들을 잇는 연결선) 이다.모든 링크 거리는 동일하다.각 링크에는 위상차(phase difference) 가 정의되며 \([-\pi, \pi)\)의 값을 갖는다.최소 닫힌 경로는정사각형 경로 루프(square loop),정삼각형 경로 루프(triangle loop) 두 가지로 정의된다.모든 최소 루프가 가지고 있는 모든 link의 위상차 합이 (0 mod 2\(\pi\))로 폐합된다.정사각형 루프 3개를 가지고 직교 결합하여 정팔면체 입체 ..
쿼크에 대하여v1.4 방식의 색전하 정의가 선택된 이유는 위상차의 순환열 동치류에 의해 플라켓이 가질 수 있는 조합이 3개임에도 불구하고 (단, 위상차가 모두 다를 경우) 분수 전하를 만들 방법을 찾지 못했다. 더해서 플라켓 3개를 결합해서 정팔면체를 구성할때 한개 순환열의 동치류를 이용해서 결합 조건을 만족하는 경우는 가능했지만 다른 순환열을 끼워넣으면 결합조건을 만족하지 않았다. 플라켓을 유사쿼크로 뒀을 경우 그 부분이 문제가 되어 정팔면체를 유사쿼크로 바꿨던 것이다.그런데, 위상차의 principal을 결정하는데 에러가 있어서 이를 \((0,2\pi]\)로 수정하였더니 다음과 같이 정팔면체 입체 폐합이 가능한 플라켓의 종류가 늘어났고 이 플라켓간의 상호 결합이 가능해져서 이전에 되지 않았던 교차 결..
* 본 Qaether 이론은 실험적으로 검증되지 않은 토이이론임을 미리 밝힙니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는 순수 무(無)를 뜻한다. 좌표·거리·시공간 구조를 일절 제공하지 ..
제목부터가 물리학자 입장에서 보면 상당히 도전적인 제목이라 혹시 제목을 보고 읽고 계시다면 다시한번 언급한다. Qaether 이론은 Toy 이론으로 실험적으로 검증된 적이 없다. 다만, 작자의 머릿속에 떠오른 어쩌면 허무맹랑한 아이디어를 ChatGPT의 도움을 얻어 수학화하다보니 여기까지 오게 되었다. 보기에 무리하다고 느껴지고 너무 점프한것 같다고 느껴져도 어떤 SF 소설의 배경이나 유니버스의 기초정도로 여겨주길 바란다. Qaether 규약(순환열→색→맛→쿼크/바리온·메손→트라이앵글릿→정사면체→렙톤→전하·스핀)을 그대로 채택한 상태에서, IR(연속) 한계에서 SU(3)×SU(2)×U(1) 게이지 이론이 어떻게 유도되는지를 단계별로 정리.0. 전제·규약(요약)격자: FCC, 간격 \(a=l_p\).노드(..
“순환열 → 색 → 맛(정팔면체) → 쿼크 → 바리온/메손 → 트라이앵글릿 → 정사면체 → 렙톤 → 전하·스핀”까지, 기본 대칭을 순환열의 \(D_4\)로 하여 규약을 일관된 수학 기호와 정의로 정리한다. 0. 전제·기호격자: FCC, 격자 간격 \(a=l_p\). (v1.4에서 부터 반영 예정)노드(사이트) \(i\): 단위 쿼터니안 \(q_i\in SU(2)\) (로터/스핀자 자유도).링크 위상: \(\Delta\phi_{ij}=\phi_j-\phi_i\).짧은 루프 잠금(삼각·사각)$$\Delta\phi_{ij}\in\tfrac{\pi}{6}\mathbb Z,\qquad \sum_{(ij)\in \ell}\Delta\phi_{ij}\equiv \Phi_\ell=2\pi n_\ell\ (n_\ell\..
안에 태그를 넣어 이미지를 배치합니다 -->0. 핵심 요약링크 위상차 양자화: 모든 링크 위상은 \(\Delta\phi_{ij}=m_{ij}\,\pi/6\) (정수 \(m_{ij}\))로 양자화되며, 격자의 위상군은 \(U(1)/\mathbb Z_{12}\simeq C_{12}\). 짧은 루프(△, □)가 이 조건을 동역학적으로 강제한다.플라켓 플럭스 부문 고정: 한 플라켓의 네 링크 정수 \(\{n_i\}\)가 \(\sum n_i=12\)인 부문을 고정한다(정수합, not mod). 이 부문에서만 미세배치(순환열)가 물리적 라벨로 남는다.순환열 3종 = 색 3종: 네 값이 서로 다를 때, 플라켓을 따라 읽은 24개의 원순열을 정사각 판의 디헤드럴 대칭 \(D_4\)(회전·반사)로 나누면 정확히 3개의..