목록플라켓 (23)
Qaether 연구일지
플라켓의 위상차 합이 고정되고 각각의 위상차가 이산화되어 있을 경우 3가지 순환열 동치류가 존재한다는 증명이다.이 증명은 SU(3)에서 쿼크의 색이 3가지인것을 표현하기에 적합해서 중요한 구조로 보고 있다.더해서 이 쿼크류의 3가지 색을 각각 다른 순환열과 결합하여 정팔면체 결합까지 만들어 바리온 구조를 설명하려고 하고 있다.다만 현재 이 논문은 거기까지 간 내용은 아니고 수학적으로 존재성을 입증할 뿐이다. 본 논문을 genodo에서 DOI 받아서 researchgate에 올렸다. 수학적으로 증명만 하면 되서 엄밀하게 증명하였다. https://www.researchgate.net/publication/396437920_Counting_Distinct_Plaquette_Phase_Configuration..
1. 위상적 기원 — 링크의 위상수FCC 격자에서는 각 링크(1-체인)가 여러 개의 닫힌 2-셀(삼각, 사각 루프)에 둘러싸여 있다.이를 사슬군 체계로 쓰면 \( C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{} 0 \).이때 경계 연산자의 여상(cokernel), 즉 \( \mathrm{coker}(\partial_2) \)에 torsion이 생긴다.그게 바로 \( \mathbb{Z}_{12} \) — 12번 더하면 0이 되는 위상적 순환.그래서 한 링크의 위상차 \( \phi_e \)는\[12\phi_e \equiv 0 \pmod{2\pi}\]로 제한되고, 자연스럽게 \( \pi/6 \) 단위로 양자화된다.즉, 위상차의 “단위”는 물리 법칙이 아니라 격자 자체의 위..
14개 조합 → (a,b,c) 벡터화 → Cartan( \(T_3,T_8\) ) 투영 → 기본가중치 (\(\omega_1,\omega_2\)) 기저 좌표 순서로 정리됨.1) 14개 정팔면체 결합 가능 조합플라켓 네 값 중 \(0\)을 공통으로 포함하므로, 나머지 세 값만 (\(a,b,c\))로 본다. 합 조건에 따라 두 묶음.합 ≡ 0 (mod 12) — 11개\begin{aligned}&(-5,-4,-3),(-5,-1,6),(-5,1,4),(-5,2,3)\\&(-4,-2,6),(-4,-1,5),(-4,1,3)\\&(-3,-2,5),(-3,-1,4),(-3,1,2)\\&(-2,-1,3).\end{aligned}합 ≡ 12 (mod 12) — 3개\[(1,5,6),(2,4,6),(3,4,5).\]2) RG..
[문제1]정사각형 플라켓의 네 변에 위상차 (\(a,b,c,d\))가 배정되어 있다고 하자. 다음을 가정한다.1. 위상차는 \((-\pi,\pi]\) 범위에 있고, **최소 단위가 \(\pi/6\)** 로 양자화되어 있다.2. 네 값은 서로 달라 엄밀히 **오름차순** \((a3. 닫힘 조건: \(a+b+c+d\equiv 0\pmod{2\pi}\).이때 가능한 모든 \((a,b,c,d)\)를 구하라. [해답]편의를 위해 (\(a=\frac{\pi}{6} k_1 ,b=\frac{\pi}{6} k_2 ,c=\frac{\pi}{6} k_3 ,d=\frac{\pi}{6} k_4 \)) 로 두고\[k_i\in\{-5, \cdots ,6\},\quad k_1\]라고 하자. 닫힘 조건 \(a+b+c+d\equiv 0..
* 앞서 이 문제는 https://qaether.tistory.com/entry/v12 에서 풀이했지만 완전히 수학적으로만 정의하고자 다시 여기서 정리한다. [문제]앞서 유도한 링크의 위상차 양자화 조건을 바탕으로 어떤 플라켓의 링크 4개의 위상차를 \((a,b,c,d)\) 로 표현하고 \(a,b,c,d\) 는 모두 다르다고 하자. 궤도 대칭과 반사 대칭은 같은 조합으로 본다고 했을때 \(a,b,c,d\) 4개 요소를 모두 써서 만들 수 있는 조합은 몇개인지 번사이드 정리 이용해서 풀어보자.[풀이]플라켓 4자리에 서로 다른 \((a,b,c,d)\)를 모두 한 번씩 배치한다고 하고, 회전(궤도 대칭)과 반사 대칭을 같은 조합으로 보겠습니다. 즉 정사각형의 이면군 \(D_4\) (원소 8개)가 작용하는 배..
[서술문제]다음 조건을 바탕으로 FCC 격자의 기하학적 구조만으로 링크 위상차가 양자화됨을 증명하고 그 양자화 단위를 구하라.조건격자는 FCC(Face-Centered Cubic) 구조를 갖고 주기경계조건을 갖는다.격자의 기본 객체는 site(격자점) 과 link(격자점들을 잇는 연결선) 이다.모든 링크 거리는 동일하다.각 링크에는 위상차(phase difference) 가 정의되며 \([-\pi, \pi)\)의 값을 갖는다.최소 닫힌 경로는정사각형 경로 루프(square loop),정삼각형 경로 루프(triangle loop) 두 가지로 정의된다.모든 최소 루프가 가지고 있는 모든 link의 위상차 합이 (0 mod 2\(\pi\))로 폐합된다.정사각형 루프 3개를 가지고 직교 결합하여 정팔면체 입체 ..