목록순환열 (9)
Qaether 연구일지
1) 루프(플라켓) 포텐셜: 정의와 값루프 결합만 남긴 정적 퍼텐셜:$$V_{\text{loop}}(\square) =\underbrace{\Lambda_\ell\sum_{e\in\square}(1-\cos\theta_e)}_{\text{U(1) 위상 잠금}} +\underbrace{\frac{1}{2g_s^2}\|G_\square-\mathbb I_3\|_F^2}_{\text{SU(3) Wilson(플라켓)}}, \quad \theta_e=\frac{\pi}{6}\,\zeta_e.$$세 대표 순환열(계열)에 대해 플라켓 하나당 값:U(1) 항$$\begin{aligned} (0,2,4,6)&:\;V_{U(1)}=4\,\Lambda_\ell,\\ (0,1,5,6)&:\;V_{U(1)}=4\,\Lambda..
안에 태그를 넣어 이미지를 배치합니다 -->0. 핵심 요약링크 위상차 양자화: 모든 링크 위상은 \(\Delta\phi_{ij}=m_{ij}\,\pi/6\) (정수 \(m_{ij}\))로 양자화되며, 격자의 위상군은 \(U(1)/\mathbb Z_{12}\simeq C_{12}\). 짧은 루프(△, □)가 이 조건을 동역학적으로 강제한다.플라켓 플럭스 부문 고정: 한 플라켓의 네 링크 정수 \(\{n_i\}\)가 \(\sum n_i=12\)인 부문을 고정한다(정수합, not mod). 이 부문에서만 미세배치(순환열)가 물리적 라벨로 남는다.순환열 3종 = 색 3종: 네 값이 서로 다를 때, 플라켓을 따라 읽은 24개의 원순열을 정사각 판의 디헤드럴 대칭 \(D_4\)(회전·반사)로 나누면 정확히 3개의..
정리 (색의 보편성)플라켓을 구성하는 네 개의 위상 정수 ({a, b, c, d})가 서로 다를 때, 이 숫자들의 순서 있는 배열(순열)을 정사각형의 꼭짓점에 배치하는 집합에 정사면체 대칭군 (\(D_4\))를 작용시키면, 그 배열들은 항상 정확히 3개의 동치류(궤도, Orbits)로 나뉜다. (실제 4개의 위상차를 위상 정수로 정규화)이 정리는 특정 숫자 조합(예: (0,2,4,6))에만 국한된 우연한 결과가 아니라, '네 개의 서로 다른 객체'라는 조건만 만족하면 항상 성립하는 보편적인 수학적 사실임을 보이는 것이 중요하다. 수학적 증명증명을 위해 군론(Group Theory)의 강력한 도구인 번사이드 보조정리(Burnside's Lemma)를 사용하겠다. 이 정리는 어떤 집합에 군이 작용할 때 궤도..