일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- assumption
- su(3)
- CHARGE
- Axiom
- qaether
- 케이서
- 결합패턴
- gauge
- Physics
- void
- 업쿼크
- Gravity
- QUANTUM
- aether
- 로렌츠대칭
- Bonding
- particle
- lattice
- Einstein
- color
- symmetry
- 아인슈타인
- 가정
- 시간
- FCC
- SPIN
- 입자
- 게이지
- Lorentz
- Space
- Today
- Total
목록Lorentz (5)
The Qaether Log

Qaether ↔ 윌슨 격자 게이지 이론의 1 : 1 대응격자 간격 \(a=2l_p\), \(U_{ij}=\Delta q_{ij}\) 단계Qaether 정의윌슨 격자 QCD/QED 대응핵심 근거① 링크 변수두 셀의 상대위상 \(\Delta q_{ij}=q_jq_i^{-1}\in SU(2)\) 및 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)윌슨 링크 $$U_{ij}\in G$$국소 변환 $$U_{ij}\to g_jU_{ij}g_i^{-1}$$Qaether 링크와 동일한 변환 법칙② 플라켓(곡률)$$F_{\Box}=\prod_{\ell\in\Box}\Delta q_\ell$$Wilson loop $$U_{\Box}=\prod_\ell U_\ell$$정의가 완전히 일치③ 게이지 작..

격자 Qaether 이론에서 출발하여 연속 극한 → Spin(3,1) 테트라드/스핀 연결 도입 → Palatini 1차 형식 작용 → 변분원리 → Gibbons–Hawking–York 경계항 → 물질부 포함 → Einstein 방정식 도출에 이르는 전 과정을 단계별·세부적으로 기술했습니다. 1. 격자 Qaether 이론과 총 작용격자 셀 라그랑지안각 격자점 \(i\)에서 $$\mathcal L_{\rm Qaether}(i) = \mathcal L_{\rm Kinetic} + \mathcal L_{\rm Gravity/Mass} + \mathcal L_{\rm Gauge} + \mathcal L_{\rm Fermion}$$ A1–A8에서 정의된 SU(2) 쿼터니언 \(\mathbf q_i\), 국소 압력 ..
Below is a compact derivation—starting from the axioms—ofwhy every long-wavelength ( \(\lambda ≫ l_p\) ) excitation of the FCC Qaether lattice obeys a Lorentz-invariant field equation, andhow coarse-graining the same lattice reproduces the Einstein field equations in the infrared. 1 Setup: lattice scales and fieldsLattice spacing \( a \equiv l_p\) (cell radius).Discrete phase field \(\phi_i\) li..
To verify the restoration of Lorentz symmetry of Qaether Theory, the following tests are proposed:Theoretical Approximation Analysis (Deriving the approximation of \( \omega(\vec{q}) \) in a simple FCC structure)Convergence from discrete topological oscillators to the continuous wave equation.Average of the FCC directional tensor converging to isotropic \( \delta^{\mu\nu} \).Isotropic convergenc..
로렌츠대칭성 회복을 확인하기 위해서 다음과 같은 테스트를 진행해보려고 한다. 1. FCC 격자 위 위상 진동자의 파동 전파 속도 \(c_\phi(\vec{q})\) 가 방향에 따라 어떻게 달라지는지 확인2. 이산 위상 진동자 → 연속 파동 방정식 수렴3. FCC 방향 텐서 평균 → 등방성 \(\delta^{\mu\nu}\) 수렴4. Void 텐서 \(\mathcal{D}_{\mu\nu}\) 의 등방 수렴성5. 상대론적 분산 관계 근사 [1단계] 이론적 근사 분석 ( 간단한 FCC 구조에서 \(\omega(\vec{q})\) 근사 유도) 선형 근사:$$\frac{d^2 \phi_i}{d\tau^2} \approx 36 \epsilon_\phi \sum_j A_{ij} (\phi_j - \phi_i)$$..