목록2025/10/06 (2)
The Qaether Log
1. 위상적 기원 — 링크의 위상수FCC 격자에서는 각 링크(1-체인)가 여러 개의 닫힌 2-셀(삼각, 사각 루프)에 둘러싸여 있다.이를 사슬군 체계로 쓰면 \( C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{} 0 \).이때 경계 연산자의 여상(cokernel), 즉 \( \mathrm{coker}(\partial_2) \)에 torsion이 생긴다.그게 바로 \( \mathbb{Z}_{12} \) — 12번 더하면 0이 되는 위상적 순환.그래서 한 링크의 위상차 \( \phi_e \)는\[12\phi_e \equiv 0 \pmod{2\pi}\]로 제한되고, 자연스럽게 \( \pi/6 \) 단위로 양자화된다.즉, 위상차의 “단위”는 물리 법칙이 아니라 격자 자체의 위..
0. 배경·기호(엄밀 정식화)격자와 체인 복합체FCC 최근접결합 그래프 \(G=(V,E)\) 위에 삼각/사각 최소루프를 2-셀로 붙인 2-스켈레톤 \(X\)를 잡는다. $$C_2=\mathbb Z^F, \quad C_1=\mathbb Z^E, \quad \partial_2:C_2\to C_1$$ 각 링크 \(e\in E\)에는 위상 \(\phi_e\in\mathbb R/2\pi\mathbb Z\)를 두고, 모든 최소루프 \(f\)에 대해 \(\Phi(\partial_2 f)=0\)가 성립한다.이때 \(\Phi:C_1\to\mathbb R/2\pi\mathbb Z\)는 1-코사이클로 잘 정의된다. 링크 위상 양자화특정 링크 \(e\)의 동치류 \([e]\in A:=C_1/\mathrm{im}\partial..