목록스핀 (5)
Qaether 연구일지
A7. 전하(Electric Charge) 정의 — 기하학적 스핀의 산술(Arithmetic)1. 핵심 원리전하는 입자를 이루는 3차원 위상 구조(정사면체·정팔면체)의 꼭짓점들에 놓인 Qaether의 SU(2) 스핀 상태로부터 U(1) 성분을 산술 합하여 얻는 창발적 내부량이다.전하는 외부에서 “붙는 숫자”가 아니라, 최소단위 스핀의 방향성·위상이 만드는 총합 결과다. 이 이론에서 유효 쿼크는 ‘서로 직교하는 플라켓 3장으로 닫힌 정팔면체’이다. 전하값은 해당 객체를 이루는 꼭짓점들의 U(1) 방향 프로젝션의 합으로 정해진다. 따라서 쿼터니안 하나는 전하기여를 갖게되며 플라켓은 분수전하를 갖는다.(배경) 스핀 자유도와 루프 홀로노미(SU(2)–SO(3) 이중피복)는 A5에 준함. 2. 정의의 계층 구조(..
FCC 격자에서 링크 위상차의 \(\pi/6\) 양자화 — 완전 증명정리(주장)FCC 최근접(contact) 그래프 \(G=(V,E)\) 위의 위상장 \(\{\phi_i\}_{i\in V}\)와 링크 위상차 \(\Delta\phi_{ij}=\phi_j-\phi_i\in\mathbb R/2\pi\mathbb Z\)에 대해, 아래의 에너지 함수를 갖는 평형(정지점)에서$$ \boxed{\ \Delta\phi_{ij}=m_{ij}\,\frac{\pi}{6}\quad(m_{ij}\in\mathbb Z)\ } $$가 모든 \((i,j)\in E\)에 성립한다. 따라서 잔여 위상 자유도는 \(U(1)\big/\mathbb Z_{12}\simeq C_{12}\)로 축소된다. 0. 설정과 표기정점 \(i\in V\),..
1) 루프(플라켓) 포텐셜: 정의와 값루프 결합만 남긴 정적 퍼텐셜:$$V_{\text{loop}}(\square) =\underbrace{\Lambda_\ell\sum_{e\in\square}(1-\cos\theta_e)}_{\text{U(1) 위상 잠금}} +\underbrace{\frac{1}{2g_s^2}\|G_\square-\mathbb I_3\|_F^2}_{\text{SU(3) Wilson(플라켓)}}, \quad \theta_e=\frac{\pi}{6}\,\zeta_e.$$세 대표 순환열(계열)에 대해 플라켓 하나당 값:U(1) 항$$\begin{aligned} (0,2,4,6)&:\;V_{U(1)}=4\,\Lambda_\ell,\\ (0,1,5,6)&:\;V_{U(1)}=4\,\Lambda..
FCC 결합과 스핀에 관련해서 좀더 물리학적으로 정합한 고찰이 있었고 이를 바탕으로 가정을 다음과 같이 고치기로 한다."Qaether는 FCC 격자구조를 기반으로 결합하는데, Qaether의 스핀 대칭성을 갖는 스핀축과 수직인 방향에 있는 Qaether들만 결합이 가능하다."이를 정리해보면:결합 가능한 방향 조건: 스핀축 ⊥ 결합방향FCC 격자에서 각 Qaether는 12개의 결합 방향을 가질 수 있다. 만약 Qaether의 스핀축을 하나의 방향으로 고정한다면, 그 축과 수직인 평면 위에 있는 결합 방향만 실제 결합에 참여할 수 있다는 것이다.예를 들어, 스핀축이 \(\hat{z}\)방향이라면, 결합 가능한 FCC 방향은 \(\hat{x}, \hat{y}, \hat{x} \pm \hat{y}\)같은 \(..
플랑크 스케일로 모델링을 할때 회전은 어떻게 이산화시켜야할지에 대한 고민이 있었다.물론 양자역학에서 서술하는 방법은 있으나 나의 직관으로 이해가 되는 방법을 찾고자 했고 ChatGPT에게 물었다. 그랬더니 다음과 같은 답변을 얻었다. Response:세상이 플랑크 길이( \(1.616 \times 10^{-35} m\) ) 단위로 이산화되어 있다면, 공간은 더 이상 연속적인 것이 아니라 불연속적인 격자나 양자화된 구조를 가진다고 가정하게 됩니다. 이런 상황에서 회전값(즉, 각도나 각운동량 등 회전에 관련된 물리량) 또한 어떻게 이산화되는지가 중요한 문제입니다.회전값의 이산화에 대한 물리적 고찰공간의 이산화와 연속 대칭성의 붕괴공간이 이산화되면, 연속적인 회전 대칭성(SO(3) 또는 SU(2))은 깨지고,..