목록라그랑지안 (7)
The Qaether Log
1) 루프(플라켓) 포텐셜: 정의와 값루프 결합만 남긴 정적 퍼텐셜:$$V_{\text{loop}}(\square) =\underbrace{\Lambda_\ell\sum_{e\in\square}(1-\cos\theta_e)}_{\text{U(1) 위상 잠금}} +\underbrace{\frac{1}{2g_s^2}\|G_\square-\mathbb I_3\|_F^2}_{\text{SU(3) Wilson(플라켓)}}, \quad \theta_e=\frac{\pi}{6}\,\zeta_e.$$세 대표 순환열(계열)에 대해 플라켓 하나당 값:U(1) 항$$\begin{aligned} (0,2,4,6)&:\;V_{U(1)}=4\,\Lambda_\ell,\\ (0,1,5,6)&:\;V_{U(1)}=4\,\Lambda..
지금까지 구축한 라그랑지안 위에, 중력항 + 우주상수(유효압력) + 게이지·로터 섹터를 하나의 작용으로 통합. 즉, IR(연속)·곡률 배경에서 쓰는 최종 통합본. (민코프스키 시그니처 (-,+,+,+), \(\mathrm{Tr}(T^aT^b)=\tfrac12\delta^{ab}\) 규약)최종 통합 작용 (IR·곡률 배경)$$\boxed{ S_{\rm total} =\int d^4x\,\sqrt{-g}\;\Big[ \underbrace{\frac{1}{16\pi G}\,(R-2\Lambda_{\rm bare})}_{\text{중력}} \;+\;\underbrace{\mathcal L_{\rm rotor}}_{\text{SU(2) 로터}} \;+\;\underbrace{\mathcal L_{\rm gauge..
1. 개요(요지)케이서 격자(간격 \(a=2l_p\))에서 링크/플라켓 변수를 곡률로 전개하면, IR에서 표준 Yang–Mills(U(1), SU(2), SU(3))로 수렴하고, 로렌츠 대칭은 \(\mathcal O\!\big((l_p/\lambda)^2\big)\) 정확도로 유효 복원된다.라그랑지안의 유효압력 항은 도함수가 없는 스칼라 퍼텐셜이므로 곡률 배경으로 올리면 완전 진공 텐서 \(T^{(\rm press)}_{\mu\nu}=-V_{\rm eff} g_{\mu\nu}\)를 만들어 우주상수로 작용한다:$$\Lambda_{\rm eff}\;=\;\Lambda_{\rm bare}+8\pi G\,V_{\rm eff}$$케이서의 점접촉 가정에서 접점 면적 비율 \(\alpha\ll1\)은 자연스럽다. 관..
1. 격자–연속 대응과 곡률 전개 (규약 고정)격자 간격: \(a \equiv 2l_p\) (셀 중심 간 거리).링크 변수: $$U_{i,i+\hat\mu}=\exp\!\big(i\,a\,g\,A_\mu(x)\big), \quad A_\mu=A_\mu^a T^a$$정규화: $$\mathrm{Tr}(T^aT^b)=\tfrac12\delta^{ab}$$ SU(3)에서 \(\lambda\)-규약(\(\mathrm{Tr}(\lambda_a\lambda_b)=2\delta_{ab}\))과의 대응은 \(T^a=\lambda^a/2\).플라켓: $$U_{\mu\nu}(x)=U_\mu(x)\,U_\nu(x+a\hat\mu)\,U_\mu^\dagger(x+a\hat\nu)\,U_\nu^\dagger(x)$$BCH 전개:..
자율형(재매개 불변) 구성, 국소 게이지 구조, 변분 방정식, 연속극한 및 페르미온 포함 여부를 체계적으로 서술합니다. 본 문서는 FCC 위상 양자화와 공변 강성 아이디어를 일관되게 통합합니다.목차전제·기호SU(2) 국소 게이지 구조자율형(배경시간 없음) 전체 라그랑지안대칭과 변분유효시간 \(\tau\) 환산FCC 위상 양자화연속극한(IR)·정규화 메모파라미터·부호·운용 체크(옵션) 페르미온 섹터 추가0. 전제·기호격자는 사이트(셀) i, 링크 \(\langle i,j\rangle\), 플라켓 \(\square\), 유한 루프 \(\ell\)로 구성되며, 격자 간격은 \(a\)입니다. 내부 회전자(물질 자유도)는 \(q_i\in SU(2)\)이고 링크 상대위상은 정의상 \(\Delta q_{ij}=q_j..
Qaether 시스템의 경우는 결합 경로를 통해서 이산경로적분을 해야한다. 1. 이산 구조에 자연스러운 수식화Qaether가 FCC 격자의 이산 점 위에 존재하고, 결합(link)들이 핵심 동역학 단위라면, 연속적 시공간의 작용량(action) 대신 “결합 경로(path)”를 따라 정의된 이산 작용량이 직관적입니다. 여기서 \(L_{ij}\)는 링크 \(i\to j\)를 통해 전파되는 위상 동역학과 스핀 정렬, 포텐셜 에너지 항을 모두 포함하는 국소 이산 라그랑지안입니다.$$S[\{\phi\},\{A\}] \;=\;\sum_{\langle i,j\rangle} \;L_{ij}\bigl(\phi_i,\phi_j,A_{ij}\bigr)\,\Delta\tau$$ 2. 경로적분(formal path integr..