목록qaether (98)
Qaether 연구일지
A1. 근원적 실재: Void와 QaetherQaether는 우주를 구성하는 공간의 최소단위 셀이다. (Quantum Aether)플랑크 스케일인 반지름 \(l_p\)의 구형 셀로 FCC lattice의 lattice site에 배치됨.셀당 최대 12방향으로 다른셀과 결합 가능하며, 결합은 에너지 해소이자 공간의 발생 조건.Qaether 구체 표면적Qaether 구체의 반지름을 \(r_p = l_p\)라 하면, 셀 하나의 전체 표면적(total surface area)은\(V_s \;=\; 4\pi\,r_p^2 \;=\; 4\pi\,l_p^2\)이다.Void: 비공간 경계조건 Void는 물리적 실체가 아니라, Qaether 시스템이 존재할 수 있는 영역의 한계를 규정하는 수학적 경계조건. Qaether는..
존재의 최소성과 공간의 출현 존재의 기저는 Void이다우주의 본질은 공간도, 시간도 아닌 무(無)의 상태인 Void이다.Void는 어떤 실체도 허용하지 않는 비존재이며, 모든 가능성 이전의 상태이다.존재는 에너지의 응축과 Void의 저항으로부터 생긴다공간이 아닌 Void 내에서 에너지를 가진 최소 단위인 Qaether가 생성된다.Void는 공간이 없기 때문에 Qaether의 팽창을 억제하며, 이 억제력이 유효 외부 저항 압력으로 작용한다.결합은 에너지 해소이며 공간의 발생 조건이다고립된 Qaether는 억눌린 내부 팽창 에너지를 결합을 통해 해소한다.결합은 FCC 격자의 12 방향으로 이루어지며, 결합 자체가 공간의 발생이다.공간과 곡률은 결합망과 응력의 발현이다결합망이 곧 공간이며, 결합의 결핍과 응력..
U(1) 위상 결합 모델에서 시작하여 장파장·저에너지 극한에서 어떻게 Maxwell 방정식이 유도되는지 단계별로 보여드리겠습니다. 1. 이산 U(1) 게이지 변수 정의위상장과 연결형 변수각 셀 i 에 위상 \(\phi_i(t)\) 를 할당하고, 인접 링크 \((i,j)\) 위에는 전자기 포텐셜의 이산 버전 \(A_{ij}(t)\) 를 도입합니다.게이지 공변 위상차는\(\Delta\phi^{\rm tot}_{ij} = (\phi_j - \phi_i) \;-\; q_e\,A_{ij}\)로 정의합니다. 여기서 \(q_e\) 는 기본 전하 단위입니다.이산 전계·자계 정의링크 전위차 \(\Delta\phi_{ij}\) 에 대응하는 전기장 성분:$$E_{ij} \;\propto\; -\frac{d}{dt}\bigl..
평면 플라켓(사각형 루프) 구조링크 수: 4개균일 결합 상수 \(K_{ij}=K_0\) 가정 시$$U_{\rm plaq} = -\sum_{4\:\text{links}}K_0 = -4\,K_0$$위상 정렬 관점에서는 모든 위상이 동일할 때(\(\Delta\phi_{ij}=0\)) 정적 평형을 이룸.정사각뿔(피라미드) 구조링크 수: 밑면 4개 + 옆면 4개 = 총 8개동일한 \(K_0\) 가정 시$$U_{\rm pyr} = -\sum_{8\:\text{links}}K_0 = -8\,K_0 \;에너지가 두 배 깊게 낮아져, 더 큰 에너지 우물에 갇힌 “진정한 안정 구조”로 판단.결합 수 및 결합 강도 고려실제 Qaether 이론에서는 $$K_{ij} = K_0\exp[-\lambda(V_{\rm void}(m..
아래와 같이 단계별로 공액변수를 정의하고, 고전 Poisson 괄호에서 양자화된 교환 관계까지 차례로 유도하면, 자연스럽게 \(\hbar_q\)가 실제 플랑크 상수 \(\hbar\)와 동일해야 함을 확인할 수 있습니다. 1. 라그랑지언 작성 및 공액운동량 정의단일 셀 i의 자유 위상 운동항만 고려한 단순화된 Lagrangian:$$L_i \;=\; \frac{1}{2}\,I_i\,\dot\phi_i^2 \quad (I_i는 관성모멘트)$$공액운동량은$$\pi_i \;=\; \frac{\partial L_i}{\partial\dot\phi_i} \;=\; I_i\,\dot\phi_i \;=\; P_i$$즉, 이 이론에서 정의한 \(P_i\)와 일치합니다. 2. 고전 Poisson 괄호고전 역학에서 위상 \..