목록링크 (1)
The Qaether Log
[v0.2] 위상차 양자화 증명
FCC 격자에서 링크 위상차의 \(\pi/6\) 양자화 — 완전 증명정리(주장)FCC 최근접(contact) 그래프 \(G=(V,E)\) 위의 위상장 \(\{\phi_i\}_{i\in V}\)와 링크 위상차 \(\Delta\phi_{ij}=\phi_j-\phi_i\in\mathbb R/2\pi\mathbb Z\)에 대해, 아래의 에너지 함수를 갖는 평형(정지점)에서$$ \boxed{\ \Delta\phi_{ij}=m_{ij}\,\frac{\pi}{6}\quad(m_{ij}\in\mathbb Z)\ } $$가 모든 \((i,j)\in E\)에 성립한다. 따라서 잔여 위상 자유도는 \(U(1)\big/\mathbb Z_{12}\simeq C_{12}\)로 축소된다. 0. 설정과 표기정점 \(i\in V\),..
Articles
2025. 9. 1. 16:58