목록2025/07 (16)
Qaether 연구일지
기존 Qaether 이론에서는 각 셀마다 반지름 \(l_p\)의 3차원 구(3-ball) 위에 단 하나의 U(1) 스칼라 위상 \(\phi_i\in[0,2\pi)\)만을 할당했고, 이 위상을 링크 홀로노미로 연결해 전하와 위상 양자화를 구현했다. 셀 자체에 기저 에너지를 정의하고 이를 아인슈타인 방정식과 연결하는 작업은 생각보다 잘 되었지만 게이지를 설명하기에는 어려움을 느끼고 있었다. 특히 스핀½을 설명하기 위해서는 “스피너릿”과 같은 외삽적 half-angle 가정이 반드시 필요했기 때문에, 이론의 통일성과 자연성에 한계를 느끼고 있었다. 그런 이유로 스핀의 정의 부분을 마무리하기 위해 SU(2) 대칭에 대한 공부하던 과정에서, SU(2)의 단위원 사원수(quaternion)가 이루는 3-구(\(S..
결합패턴 정의기본루프트라이앵글릿 (Δ, \(\ell_3\))구성: 3개의 링크가 닫힌 형태.위상 폐합식:$$\Phi_{\ell_3}= \sum_{(ij)\in\ell_3} \Delta\phi_{ij} \;=\; 2\pi\,n_{Δ}, \quad n_{Δ}\in\{\,-1,\,0,\,+1\,\}$$\(n_{Δ}\)를 트라이앵글릿 지수라 부른다.플라켓 (□, \(\ell_4\))구성: 4개의 링크가 닫힌 형태.위상 폐합식(일반형):$$\Phi_{\ell_4}= \sum_{(ij)\in\ell_4} \Delta\phi_{ij} \;=\; 2\pi\,n_{□}, \quad n_{□}\in\{\,-1,\,0,\,+1\,\}$$\(n_{□}\)를 플라켓 지수라 부른다스피너릿 (◇, \(\ell_s\))구성: ℓ₄ ..
FCC 격자에서 위상차가 \(\displaystyle\pi/6\) 단위로 양자화된다는 완전 증명핵심 결론: 모든 링크 \((i,j)\)의 총위상차는 $$ \boxed{\;\;\Delta\phi_{ij}^{\rm tot}=m_{ij}\,\frac{\pi}{6}, \qquad m_{ij}\in\mathbb Z\;}$$격자 전체의 위상 자유도는$$\displaystyle U(1)\big/\mathbb Z_{12}\,\simeq\,C_{12}$$로 축소된다. 0. 전제와 기호기호 의미\(l_p\)구(셀) 사이 중심‑간 거리 = 진동 파장\(\phi_i\)셀 \(i\)의 이산 위상$$\chi_{ij}=e^{i\Delta\phi_{ij}^{\rm tot}}$$링크 변수$$\chi_\ell=\prod_{(a..
* 본 Qaether 이론은 실험적으로 검증되지 않은 가설임을 미리 밝힙니다. 도입: 철학적·직관적 배경 우리는 흔히 “텅 빈 공간”이라 부르는 진공에 대해 아무 현실성 없는 ‘허상’이라 여기곤 한다. 고대부터 과학자와 철학자는 ‘진공이란 존재할 수 없는가?’를 물었고, 현대 물리학은 ‘양자 진공’ 개념을 통해 그 답을 더욱 복잡하게 만들었다. 그러나 그마저도 설명하지 못하는 궁극의 “무(無)”를 상정할 때, 우리는 다시 근본 질문에 되돌아간다. “진정한 무(無)는 그 자체로 어떤 자유도도 허용하지 않는다. 그렇다면, 어떻게 우주는 이 무(無) 위에서 태어날 수 있었는가?” 선언: Void → Qaether → 공간·입자Void = 절대적 경계조건, 완전한 무(無)공간·시간·장(field)·물리량 등 ..