목록전체 글 (127)
Qaether 연구일지
FCC 격자와 이를 바탕으로 한 최소 결합 루프를 수학적으로 정의할 필요가 있다고 생각되어 다음과 같이 구조화를 진행한다. FCC 격자의 위상장(cochain) 구조격자 정의FCC 격자의 그래프를 다음과 같이 둔다. (여기서 \(V\)는 site(정점) 집합, \(E\)는 link(변) 집합이다.)\[G = (V, E)\]격자의 최소 닫힌 루프는 정삼각형과 정사각형 경계로 이루어진다.\[\mathcal{P} = \mathcal{P}_3 \cup \mathcal{P}_4\] 위상(cochain) 변수의 정의 각 site \(i \in V\)에는 위상을 둔다:\[\phi_i \in \mathbb{R}/2\pi\mathbb{Z}, \qquad \text{(0-cochain)}\]각 link \(e = (i ..
플라켓의 위상차 합이 고정되고 각각의 위상차가 이산화되어 있을 경우 3가지 순환열 동치류가 존재한다는 증명이다.이 증명은 SU(3)에서 쿼크의 색이 3가지인것을 표현하기에 적합해서 중요한 구조로 보고 있다.더해서 이 쿼크류의 3가지 색을 각각 다른 순환열과 결합하여 정팔면체 결합까지 만들어 바리온 구조를 설명하려고 하고 있다.다만 현재 이 논문은 거기까지 간 내용은 아니고 수학적으로 존재성을 입증할 뿐이다. 본 논문을 genodo에서 DOI 받아서 researchgate에 올렸다. 수학적으로 증명만 하면 되서 엄밀하게 증명하였다. https://www.researchgate.net/publication/396437920_Counting_Distinct_Plaquette_Phase_Configuration..
A7. Electric Charge — Geometric Spin Arithmetic 0. 설정·기호격자: FCC 1-스켈레톤 \(E\)와 최소 루프(삼각·사각) 2-셀 집합 \(F\)로 이루어진 2-복합체.내부 자유도: 각 정점 \(i\)에 SU(2) 스핀\[\mathbf q_i=\exp \Big[i\frac{\phi_i}{2}\big(\mathbf n_i \cdot \boldsymbol\sigma\big)\Big],\quad\mathbf n_i\in S^2,\ \quad \phi_i\in(-\pi,\pi] \]링크 변수: $$U_{ij}=\mathbf q_j\mathbf q_i^{-1}\in SU(2)$$위상 양자화(섹터 고정): (색전하에서와 동일한 \(\mathbb Z_{12}\) 잔여 구조) ..
A6. 색전하의 정의 (\(D_4\) 순환열 동치류) 0. 배경·기호(엄밀 정식화)격자와 체인 복합체FCC 최근접결합 그래프 \(G=(V,E)\) 위에 삼각/사각 최소루프를 2-셀로 붙인 2-스켈레톤 \(X\)를 잡는다. $$C_2=\mathbb Z^F, \quad C_1=\mathbb Z^E, \quad \partial_2:C_2\to C_1$$ 각 링크 \(e\in E\)에는 위상 \(\phi_e\in\mathbb R/2\pi\mathbb Z\)를 두고, 모든 최소루프 \(f\)에 대해 \(\Phi(\partial_2 f)=0\)가 성립한다.이때 \(\Phi:C_1\to\mathbb R/2\pi\mathbb Z\)는 1-코사이클로 잘 정의된다. 링크 위상 양자화특정 링크 \(e\)의 동치류 \([e]..
1. 위상적 기원 — 링크의 위상수FCC 격자에서는 각 링크(1-체인)가 여러 개의 닫힌 2-셀(삼각, 사각 루프)에 둘러싸여 있다.이를 사슬군 체계로 쓰면 \( C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{} 0 \).이때 경계 연산자의 여상(cokernel), 즉 \( \mathrm{coker}(\partial_2) \)에 torsion이 생긴다.그게 바로 \( \mathbb{Z}_{12} \) — 12번 더하면 0이 되는 위상적 순환.그래서 한 링크의 위상차 \( \phi_e \)는\[12\phi_e \equiv 0 \pmod{2\pi}\]로 제한되고, 자연스럽게 \( \pi/6 \) 단위로 양자화된다.즉, 위상차의 “단위”는 물리 법칙이 아니라 격자 자체의 위..
14개 조합 → (a,b,c) 벡터화 → Cartan( \(T_3,T_8\) ) 투영 → 기본가중치 (\(\omega_1,\omega_2\)) 기저 좌표 순서로 정리됨.1) 14개 정팔면체 결합 가능 조합플라켓 네 값 중 \(0\)을 공통으로 포함하므로, 나머지 세 값만 (\(a,b,c\))로 본다. 합 조건에 따라 두 묶음.합 ≡ 0 (mod 12) — 11개\begin{aligned}&(-5,-4,-3),(-5,-1,6),(-5,1,4),(-5,2,3)\\&(-4,-2,6),(-4,-1,5),(-4,1,3)\\&(-3,-2,5),(-3,-1,4),(-3,1,2)\\&(-2,-1,3).\end{aligned}합 ≡ 12 (mod 12) — 3개\[(1,5,6),(2,4,6),(3,4,5).\]2) RG..