목록su(3) (4)
The Qaether Log
1. 기본 전제와 변수정점 자유도: 단위 쿼터니안 \(q_i\in SU(2)\).링크: \(\Delta q_{ij}=q_j q_i^{-1}\).Hopf 섬유의 U(1) 위상각 \(\phi_i\)를 뽑아 \(w_i=e^{i\phi_i/2}\), 링크 \(\Delta w_{ij}=e^{i(\phi_j-\phi_i)/2}\)SU(3) 링크는 정적 색 배경 + 동적 글루온 형태:$$\Xi_{ij}=\exp\!\big[i\,C_{ij}\!\cdot\! \lambda\big]\,\exp\!\big[-ig_s A_{ij}\big]$$여기서 \(C_{ij}\)는 플라켓 미세배치(색 궤도; 아래 2.3)로부터 오는 Cartan 공간 벡터, \(A_{ij}\)는 글루온.자율형(재매개 불변) 작용의 시간자(라프스) \(E(..

최근에 내가 Qaether 이론에서 “플라켓을 따라 읽은 순환열(사이클 순서) 3종 = 색 3종”으로 두고 색전하를 정의한 적이 있다. 운이 좋게도 상당히 정합한 부분이 많아서 이를 이용하여 Qaether 이론을 전개하고 있다. 그러나 재미있게도 Qaether이론과 구조적으로 동치인 표준 격자 게이지 이론(LGT)에서는 “플라켓을 따라 읽은 순환열(사이클 순서) 3종 = 색 3종”으로 두면 문제가 생긴다. Qaether에선 전제가 달라서 그런 결론이 얻어진다. 그래서 어떤 차이가 있는지 확인하고자 한다. 왜 표준 LGT에선 곤란한가게이지·켤레 불변성: SU(3) 링크 \(U_\mu(x)\)에서 관측량은 \(\mathrm{Tr}\,U_{\square}\), 윌슨 루프 등 “켤레류”에만 의존. 플라켓을 돌며..
색전하 정의의 개정 아이디어 (Qaether 이론 A7 수정본)1. 문제점 (기존 정의의 모순)Cartan 투영이 항상 0링크를 \(\lambda_{1,4,6}\) 축에만 정렬시키면, Cartan \(\lambda_{3,8}\)에 대한 투영은 항상 0 → 색전하가 사라짐에도 불구하고 메손 색전하를 주장한 부분이 자기모순.게이지 불변성 부재단순합 \(\sum \tilde X\)는 국소 SU(3) 게이지변환에 따라 회전하므로 관측가능량이 아님. 색전하는 원칙적으로 가우스 법칙이나 Wilson loop로 정의해야 함.8차원 임베딩 불충분\(\lambda_{1,4,6}\) 세 방향만으로는 SU(3) 8차원 자유도를 모두 만들 수 없음. λ₂, λ₅, λ₇, λ₃, λ₈ 성분이 생성되는 메커니즘이 불명확. 2. ..
정리 (색의 보편성)플라켓을 구성하는 네 개의 위상 정수 ({a, b, c, d})가 서로 다를 때, 이 숫자들의 순서 있는 배열(순열)을 정사각형의 꼭짓점에 배치하는 집합에 정사면체 대칭군 (\(D_4\))를 작용시키면, 그 배열들은 항상 정확히 3개의 동치류(궤도, Orbits)로 나뉜다. (실제 4개의 위상차를 위상 정수로 정규화)이 정리는 특정 숫자 조합(예: (0,2,4,6))에만 국한된 우연한 결과가 아니라, '네 개의 서로 다른 객체'라는 조건만 만족하면 항상 성립하는 보편적인 수학적 사실임을 보이는 것이 중요하다. 수학적 증명증명을 위해 군론(Group Theory)의 강력한 도구인 번사이드 보조정리(Burnside's Lemma)를 사용하겠다. 이 정리는 어떤 집합에 군이 작용할 때 궤도..