목록표준모형 (2)
The Qaether Log
도입부 및 A1: Void와 Qaether내부 논리Void를 완전한 무(無)로 두고 좌표·거리·메트릭을 부정한 것은 이후 "그래프 기반 접촉" 정의와 모순 없음.Qaether를 \(B^3(l_p)\)와 내부 \(S^3\) 위상공간으로 정의한 부분이 명확하며, 쿼터니안 표현과 회전각·회전축 분해도 SU(2) 표준과 일치.내부 정상파 모드의 zero-point energy \(E_0=\frac12\hbar\omega_0\) 정의도 물리적으로 무리 없음.단계 연결성링크 변수 정의 \(\Delta\mathbf q_{ij}=\mathbf q_j\mathbf q_i^{-1}\)는 A2~A9 전반에서 공통 사용되므로 일관성 유지.기존 이론과의 비교SU(2) 쿼터니안 자유도 → 스핀 네트워크, 루프 양자중력(LQG) ..
1. 개요목표: Qaether 이론의 위상장 변수와 결합벡터를 이용해 격자상에서 U(1)·SU(3) 등의 게이지장을 정의하고, Wilson 작용을 통해 이론의 이산 격자판 버전을 세운다.핵심 전략Qaether 링크 위상의 최소 결합 형태로 게이지 링크 변수 도입폐회로(plaquette)에 대한 Wilson 루프 작용 정의연속극한에서 연속 게이지 이론(Lagrangian)을 복원 2. 링크 변수 정의Qaether 위상 총합링크 \(i\to j\) 에서의 총 위상차$$\Delta\phi_{ij}^{\rm tot} \;=\;\phi_j - \phi_i \;-\; q_e\,A_{ij}^{U(1)} \;-\; g\,\mathbf C_i\!\cdot\!A_{ij}^{SU(3)}$$격자 게이지 링크 변수이를 지수화하..