목록색전하 (4)
The Qaether Log
Qaether 이론은 FCC 격자에 배치된 최소 단위 셀과 그 링크 변수를 통해 물리 법칙을 정의하는데, 이 구조는 윌슨이 제안한 격자 게이지 이론과 본질적으로 유사하다. 실제로 Qaether 격자의 링크·플라켓 변수와 holonomy는 Wilson 루프와 동일한 수학적 형식을 가지며, 연속극한에서는 표준 Yang–Mills 라그랑지안으로 수렴한다. 따라서 Qaether 이론의 정합성과 물리적 의미를 이해하기 위해 먼저 윌슨 격자 게이지 이론을 이해할 필요가 있다고 생각해 간단히 소개한다. 1. 개요와 등장 배경1.1 목적격자 게이지 이론은 연속 시공간에서 정의된 게이지 이론(예: 양자색역학, QCD)을 유한 격자 위에 이산화(discretization) 하여 비섭동적(non-perturbative) 해..

* 본 Qaether 이론은 실험적으로 검증되지 않은 가설임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 반지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는..
색전하 정의의 개정 아이디어 (Qaether 이론 A7 수정본)1. 문제점 (기존 정의의 모순)Cartan 투영이 항상 0링크를 \(\lambda_{1,4,6}\) 축에만 정렬시키면, Cartan \(\lambda_{3,8}\)에 대한 투영은 항상 0 → 색전하가 사라짐에도 불구하고 메손 색전하를 주장한 부분이 자기모순.게이지 불변성 부재단순합 \(\sum \tilde X\)는 국소 SU(3) 게이지변환에 따라 회전하므로 관측가능량이 아님. 색전하는 원칙적으로 가우스 법칙이나 Wilson loop로 정의해야 함.8차원 임베딩 불충분\(\lambda_{1,4,6}\) 세 방향만으로는 SU(3) 8차원 자유도를 모두 만들 수 없음. λ₂, λ₅, λ₇, λ₃, λ₈ 성분이 생성되는 메커니즘이 불명확. 2. ..
정리 (색의 보편성)플라켓을 구성하는 네 개의 위상 정수 ({a, b, c, d})가 서로 다를 때, 이 숫자들의 순서 있는 배열(순열)을 정사각형의 꼭짓점에 배치하는 집합에 정사면체 대칭군 (\(D_4\))를 작용시키면, 그 배열들은 항상 정확히 3개의 동치류(궤도, Orbits)로 나뉜다. (실제 4개의 위상차를 위상 정수로 정규화)이 정리는 특정 숫자 조합(예: (0,2,4,6))에만 국한된 우연한 결과가 아니라, '네 개의 서로 다른 객체'라는 조건만 만족하면 항상 성립하는 보편적인 수학적 사실임을 보이는 것이 중요하다. 수학적 증명증명을 위해 군론(Group Theory)의 강력한 도구인 번사이드 보조정리(Burnside's Lemma)를 사용하겠다. 이 정리는 어떤 집합에 군이 작용할 때 궤도..