목록바리온 (5)
Qaether 연구일지
A7. 전하(Electric Charge) 정의 — 기하학적 스핀의 산술(Arithmetic)1. 핵심 원리전하는 입자를 이루는 3차원 위상 구조(정사면체·정팔면체)의 꼭짓점들에 놓인 Qaether의 SU(2) 스핀 상태로부터 U(1) 성분을 산술 합하여 얻는 창발적 내부량이다.전하는 외부에서 “붙는 숫자”가 아니라, 최소단위 스핀의 방향성·위상이 만드는 총합 결과다. 이 이론에서 유효 쿼크는 ‘플라켓(사각 루프)’, **바리온은 ‘서로 직교하는 플라켓 3장으로 닫힌 정팔면체’**이다. 전하값은 해당 객체를 이루는 꼭짓점들의 U(1) 방향 프로젝션의 합으로 정해진다. 따라서 쿼터니안 하나는 전하기여를 갖게되며 플라켓은 분수전하를 갖는다.(배경) 스핀 자유도와 루프 홀로노미(SU(2)–SO(3) 이중피복)..
0. 전제·기호격자: FCC, 링크 변수 $$U_{ij}=\Delta\mathbf q_{ij}=\mathbf q_j\,\mathbf q_i^{-1}\in SU(2)$$링크 총위상은 반드시 \(\Delta\phi^{\text{tot}}_{ij}=n\,\frac{\pi}{6}\)으로 양자화됨(\(n\in\mathbb Z\)) → 잔여 \(\mathbb Z_{12}\) 위상 구조.플라켓 홀로노미 $$U_\square=\prod_{(i,j)\in\square}U_{ij}$$$$\Theta_\square=\arccos\!\big(\tfrac12\mathrm{Tr}\,U_\square\big)$$“유효 쿼크” = 플라켓(사각 루프), “바리온” = 서로 직교하는 플라켓 3장이 닫혀 만든 정팔면체(12모서리 일관성)..
“순환열 → 색 → 맛(정팔면체) → 쿼크 → 바리온/메손 → 트라이앵글릿 → 정사면체 → 렙톤 → 전하·스핀”까지, 기본 대칭을 순환열의 \(D_4\)로 하여 규약을 일관된 수학 기호와 정의로 정리한다. 0. 전제·기호격자: FCC, 격자 간격 \(a=l_p\). (v1.4에서 부터 반영 예정)노드(사이트) \(i\): 단위 쿼터니안 \(q_i\in SU(2)\) (로터/스핀자 자유도).링크 위상: \(\Delta\phi_{ij}=\phi_j-\phi_i\).짧은 루프 잠금(삼각·사각)$$\Delta\phi_{ij}\in\tfrac{\pi}{6}\mathbb Z,\qquad \sum_{(ij)\in \ell}\Delta\phi_{ij}\equiv \Phi_\ell=2\pi n_\ell\ (n_\ell\..
1) 루프(플라켓) 포텐셜: 정의와 값루프 결합만 남긴 정적 퍼텐셜:$$V_{\text{loop}}(\square) =\underbrace{\Lambda_\ell\sum_{e\in\square}(1-\cos\theta_e)}_{\text{U(1) 위상 잠금}} +\underbrace{\frac{1}{2g_s^2}\|G_\square-\mathbb I_3\|_F^2}_{\text{SU(3) Wilson(플라켓)}}, \quad \theta_e=\frac{\pi}{6}\,\zeta_e.$$세 대표 순환열(계열)에 대해 플라켓 하나당 값:U(1) 항$$\begin{aligned} (0,2,4,6)&:\;V_{U(1)}=4\,\Lambda_\ell,\\ (0,1,5,6)&:\;V_{U(1)}=4\,\Lambda..
안에 태그를 넣어 이미지를 배치합니다 -->0. 핵심 요약링크 위상차 양자화: 모든 링크 위상은 \(\Delta\phi_{ij}=m_{ij}\,\pi/6\) (정수 \(m_{ij}\))로 양자화되며, 격자의 위상군은 \(U(1)/\mathbb Z_{12}\simeq C_{12}\). 짧은 루프(△, □)가 이 조건을 동역학적으로 강제한다.플라켓 플럭스 부문 고정: 한 플라켓의 네 링크 정수 \(\{n_i\}\)가 \(\sum n_i=12\)인 부문을 고정한다(정수합, not mod). 이 부문에서만 미세배치(순환열)가 물리적 라벨로 남는다.순환열 3종 = 색 3종: 네 값이 서로 다를 때, 플라켓을 따라 읽은 24개의 원순열을 정사각 판의 디헤드럴 대칭 \(D_4\)(회전·반사)로 나누면 정확히 3개의..