목록Axioms (19)
The Qaether Log
A5. 스핀(Spin)의 정의 – SU(2) 스피너·홀로노미 관점스핀은 Qaether 격자의 SU(2) 스피너가 폐곡선을 따라 병렬 수송될 때 생성되는 홀로노미가 ±1로 나타내어 보손과 페르미온을 구분하는 위상적 자유도이다.내부 자유도: SU(2) 회전 연산자로서의 쿼터니언A1의 쿼터니언 표기를 SU(2) 매트릭스 표현하면 $$\mathbf{q}_i = \cos\!\frac{\phi_i}{2}\,\mathbb I + i\,\sin\!\frac{\phi_i}{2}\,\bigl(\mathbf{n}_i\!\cdot\!\boldsymbol{\sigma}\bigr) = \exp\!\Bigl[i\,\tfrac{\phi_i}{2}\,\mathbf{n}_i\!\cdot\!\boldsymbol{\sigma}\Bigr]$..
* 본 Qaether 이론은 실험적으로 검증되지 않은 가설임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다.A4. 유효 시간의 재정의 (링크-기반 기준, 루프-동등성 공리 포함)4.1 원리 (Emergence of Time)시간은 배경이 아니라 국소 활동량(activity) 으로부터 창발한다. 활동량이 클수록 해당 객체(셀·링크·루프)의 고유시간(proper time) 은 로렌츠형 지연$$\gamma^{-1}=\sqrt{1-\beta^2}$$을 따른다. 여기서 \(\beta\)는 “활동률”(무차원)이다. 4.2 링크와 루프 (게이지 불변 기하)링크 $$U_\mu(i)=\mathbf q_{i+\hat\mu}\mathbf q_i^{-1}\in SU(2)$$임의 루프(홀로노..
A3. 질량과 중력의 창발: 결합 압력 모델셀 면적 변수전체 빈 경계면 면적: \(\mathfrak A_s \approx \pi l_p^2\) (한 Qaether 셀의 외부 반사 가능한 면적)결합당 막히는 면적: $$\mathfrak A_b \ll \mathfrak A_s \; \Longrightarrow\; \alpha \;\equiv\; \frac{\mathfrak A_b}{\mathfrak A_s} \ll 1$$남은 반사 면적셀 \(i\)가 \(m_i\)개 결합했다면 $$\mathfrak A_i(m_i) = \mathfrak A_s - m_i\,\mathfrak A_b = (1 - \alpha\,m_i)\,\mathfrak A_s$$FCC 격자 최대 \(m_i=12\)에서도 \(\alpha m_i\..
* 본 Qaether 이론은 실험적으로 검증되지 않은 토이이론임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는..

* 본 Qaether 이론은 실험적으로 검증되지 않은 가설임을 미리 밝힙니다. 현재 업데이트 하는 중이라 수시로 수정될 수 있음을 알려드립니다. 도입: 이론의 핵심 철학 및 개요우주는 어떠한 물리적 자유도나 경계조건이 전혀 정의되지 않는 완전한 공허(Void) 속에, 반지름 \(l_p\)인 불연속 최소단위 공간 Qaether들이 면심입방(FCC) 구조로 암묵적 접촉 관계(contact)로 배치된 비가환 위상 네트워크(quaternion phase network)로 이해된다. 모든 물리 법칙(입자·장·중력)은 오직 Qaether 정점 간의 링크 변수와 그로부터 유도되는 holonomy 및 곡률로부터 나온다.각각의 Entity를 정의해 본다면 다음과 같다Void는 변수·메트릭·경계조건이 전혀 존재하지 않는..
A9. 광자 (Photon)의 정의 ― U(1) 무질량 게이지 집단의 위상 파동 모드(기존 A1 – A8에 이어 붙이면 됩니다.)항목Qaether 변수/구성 물리적‧수학적 의미 표준 이론과의 대응기본 자유도U(1) 링크 위상 $$\displaystyle\Delta w_{ij}=e^{\,i\frac{\Delta\phi_{ij}}{2}}$$셀 i,j 사이의 상대 내부 위상각 \(\Delta\phi_{ij}\)전자기 퍼텐셜 \(A_\mu\)의 격자판광자장 정의작은 진동 \(\displaystyle\delta\phi_{ij}\ll1\) 만을 취해 $$\displaystyle E_{ij}\equiv\frac{\delta\phi_{ij}}{2}$$U(1) 위상 파동의 선형화된 국소 전기장맥스웰 장 강도 \(F_{..