일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- symmetry
- 입자
- 업쿼크
- 시간
- CHARGE
- Physics
- aether
- particle
- 케이서
- gauge
- Bonding
- assumption
- 가정
- lattice
- void
- Gravity
- Space
- Einstein
- Lorentz
- Axiom
- FCC
- color
- qaether
- 아인슈타인
- su(3)
- 로렌츠대칭
- 결합패턴
- 게이지
- QUANTUM
- SPIN
- Today
- Total
목록아인슈타인 (3)
The Qaether Log

격자 Qaether 이론에서 출발하여 연속 극한 → Spin(3,1) 테트라드/스핀 연결 도입 → Palatini 1차 형식 작용 → 변분원리 → Gibbons–Hawking–York 경계항 → 물질부 포함 → Einstein 방정식 도출에 이르는 전 과정을 단계별·세부적으로 기술했습니다. 1. 격자 Qaether 이론과 총 작용격자 셀 라그랑지안각 격자점 \(i\)에서 $$\mathcal L_{\rm Qaether}(i) = \mathcal L_{\rm Kinetic} + \mathcal L_{\rm Gravity/Mass} + \mathcal L_{\rm Gauge} + \mathcal L_{\rm Fermion}$$ A1–A8에서 정의된 SU(2) 쿼터니언 \(\mathbf q_i\), 국소 압력 ..

Qaether 해밀토니안이 격자 눈금 \(a\sim l_p\) 보다 훨씬 긴 파장( \(k a\ll1\) )·저에너지( \(E\ll\hbar c/l_p\) ) 한계에서 어떻게 로렌츠 대칭(Minkowski \(SO(3,1)\))을 스스로 복원하는지 단계별로 보인다. 핵심 아이디어는격자 도함수의 연속 확장유효 작용의 재규격화 인자 흡수비(非)로렌츠 항의 RG-irrelevant(고차) 억압로 정리된다. 과정마다 표준 격자 QCD·스핀계에서의 “연속 극한”과 평행선을 제시한다. 1. 격자 공변 도함수의 장파장 전개격자점 \(x=i\,a\)에서$$\nabla_\mu\mathbf{q}(x)\;=\;\frac{\mathbf{q}(x+a\hat\mu)-\mathbf{q}(x)}{a} \;=\;\partial_\mu..
Qaether → Einstein : 전과정 일람표단계 핵심 식·정의 요지A. 격자 기초1 셀 길이 = 플랑크 길이 \(l_p\)플라켓 면적 \(A_p\sim l_p^{2}\)4-D 셀 부피 \(V_{\text{cell}} = l_p^{4}\)FCC 격자·정사각플라켓이 공간의 최소 패치B. 국소 위상 → 결핍각플라켓 위상합 $$S_p=\sum_{(ij)\in\ell_4}\Delta\phi_{ij}=4\pi n_p$$정수 \(n_p\) 가 결핍 정수C. \(n_p\) ↔ 리치 스칼라$$2\pi n_p \sime A_p R_{\text{eff}}(p)$$ D. Regge 작용 정의$$S_R=C_0\sum_p A_p n_p$$\(C_0\) 아직 미정E. 격자 → 연속 치환$$\displaystyle\sum_p..