일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 입자
- 라그랑지안
- 로렌츠
- Space
- FCC
- symmetry
- void
- 공간
- lagrangian
- 에테르
- 스핀
- Lorentz
- 대칭성
- Bonding
- 공간결핍
- 가정
- particle
- 시간
- SPIN
- assumption
- qaether
- Axioms
- Gravity
- TIME
- 게이지
- manifesto
- 케이서
- aether
- 위상
- Axiom
- Today
- Total
목록Research Diary (32)
The Qaether Log
Can the dynamic equation be rewritten as a phase–path integral?If every phase trajectory that starts at cell i and ends at cell j in Qaether theory is weighted by the energy associated with that trajectory, the usual lattice path-integral kernel$$K\bigl[\phi_i\!\to\!\phi_j;\,T\bigr] \;=\; \!\! \int_{\phi(t_0)=\phi_i}^{\;\;\phi(t_0+T)=\phi_j}\! \mathcal D\phi\;\exp\!\Bigl\{\,i\,S_{\text{eff}}[\ph..
위상 변화 누적, 즉 시간에 따른 위상의 변화(\(\partial_t \phi \propto \dot{\phi}\))가 인과율(causality)을 보존하는지 여부를 수리물리학적으로 입증하려면, 위상장의 동역학 방정식과 시공간 구조에서 신호(정보) 전파의 한계가 어떻게 결정되는지 분석해야 합니다. Qaether 이론에서 위상장 동역학이 격자상에서 정의되고, 장파장 근사에서 Lorentz 대칭성이 복원된다는 점을 활용해 아래와 같이 논증할 수 있습니다. 1. 위상장 동역학과 파동 방정식Qaether 격자에서 위상장 \(\phi_i\)의 동역학은 다음과 같이 주어집니다:$$I_i(m_i) \ddot{\phi}_i = \sum_{j\in\mathcal{N}(i)} \left[ K_{ij} \Im \chi_{i..
1. 개요목표: Qaether 이론의 위상장 변수와 결합벡터를 이용해 격자상에서 U(1)·SU(3) 등의 게이지장을 정의하고, Wilson 작용을 통해 이론의 이산 격자판 버전을 세운다.핵심 전략Qaether 링크 위상의 최소 결합 형태로 게이지 링크 변수 도입폐회로(plaquette)에 대한 Wilson 루프 작용 정의연속극한에서 연속 게이지 이론(Lagrangian)을 복원 2. 링크 변수 정의Qaether 위상 총합링크 \(i\to j\) 에서의 총 위상차$$\Delta\phi_{ij}^{\rm tot} \;=\;\phi_j - \phi_i \;-\; q_e\,A_{ij}^{U(1)} \;-\; g\,\mathbf C_i\!\cdot\!A_{ij}^{SU(3)}$$격자 게이지 링크 변수이를 지수화하..
1. 서론 및 목표플랑크 스케일 격자 이산성에도 불구하고,장파장(long wavelength, \(k \ell_p \ll 1\))과 저에너지(low energy) 영역에서 기존 물리 법칙인 로렌츠 대칭(Lorentz symmetry)이 정확히 복원되어야 한다는 점입니다. 2. 위상장 \(\phi_i\)의 격자 동역학과 분산관계2-1. 이산 운동 방정식 (A12 단순화)$$\ddot{\phi}_i = K_0 \sum_{j \in N(i)} (\phi_j - \phi_i)$$여기서\(I_0\)는 국소 관성 모멘트,\(K_0\)는 인접 셀 간 위상 결합 강도,\(N(i)\)는 \(i\)번째 셀의 12개 FCC 인접 이웃 집합,\(\phi_i\)는 위상 변수.2-2. 푸리에 변환 및 분산관계푸리에 모드 $$\p..
고전적 상대론적 파동 방정식인 Klein–Gordon 방정식의 이차 시공간 미분자를 일차로 ‘인수분해’하여 Dirac 방정식을 유도하는 과정을 단계별로 보여드립니다. 모든 식은 자연단위계(\(\hbar=c=1\))를 사용하며, 마지막에 복원하는 방식으로 \(\hbar,\,c\)를 표시할 수 있습니다. 1. 출발점: 에너지-운동량 관계와 Klein–Gordon 방정식상대론적 에너지-운동량 관계: \(E^2 = \mathbf p^2 + m^2\)여기서 E는 에너지, \(\mathbf p=(p_x,p_y,p_z)\)는 3-운동량, m은 질량입니다.양자화: \(E \to i\,\frac{\partial}{\partial t}, \quad \mathbf p \to -i\,\nabla\).대입하면$$\left(i\..
U(1) 위상 결합 모델에서 시작하여 장파장·저에너지 극한에서 어떻게 Maxwell 방정식이 유도되는지 단계별로 보여드리겠습니다. 1. 이산 U(1) 게이지 변수 정의위상장과 연결형 변수각 셀 i 에 위상 \(\phi_i(t)\) 를 할당하고, 인접 링크 \((i,j)\) 위에는 전자기 포텐셜의 이산 버전 \(A_{ij}(t)\) 를 도입합니다.게이지 공변 위상차는\(\Delta\phi^{\rm tot}_{ij} = (\phi_j - \phi_i) \;-\; q_e\,A_{ij}\)로 정의합니다. 여기서 \(q_e\) 는 기본 전하 단위입니다.이산 전계·자계 정의링크 전위차 \(\Delta\phi_{ij}\) 에 대응하는 전기장 성분:$$E_{ij} \;\propto\; -\frac{d}{dt}\bigl..