일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- su(3)
- lattice
- Lorentz
- 입자
- Einstein
- symmetry
- Physics
- Bonding
- 시간
- Space
- void
- particle
- Gravity
- 게이지
- 케이서
- 결합패턴
- gauge
- CHARGE
- qaether
- FCC
- SPIN
- 아인슈타인
- color
- 업쿼크
- QUANTUM
- assumption
- 가정
- Axiom
- 로렌츠대칭
- aether
- Today
- Total
목록로렌츠대칭 (2)
The Qaether Log

Qaether 해밀토니안이 격자 눈금 \(a\sim l_p\) 보다 훨씬 긴 파장( \(k a\ll1\) )·저에너지( \(E\ll\hbar c/l_p\) ) 한계에서 어떻게 로렌츠 대칭(Minkowski \(SO(3,1)\))을 스스로 복원하는지 단계별로 보인다. 핵심 아이디어는격자 도함수의 연속 확장유효 작용의 재규격화 인자 흡수비(非)로렌츠 항의 RG-irrelevant(고차) 억압로 정리된다. 과정마다 표준 격자 QCD·스핀계에서의 “연속 극한”과 평행선을 제시한다. 1. 격자 공변 도함수의 장파장 전개격자점 \(x=i\,a\)에서$$\nabla_\mu\mathbf{q}(x)\;=\;\frac{\mathbf{q}(x+a\hat\mu)-\mathbf{q}(x)}{a} \;=\;\partial_\mu..
\(\hbar_q=\hbar\) 를 가정한 상태에서 FCC 격자의 위상 동역학이 장파장·저에너지 한계에서 어떻게 유효 연속체의 파동 방정식—즉 로렌츠 대칭성을 가지는 파동 방정식—을 재현하는지 보자. 1. 위상 동역학의 선형화원래의 비선형 방정식 (A9) 중 감쇠와 색전하 항을 무시하고, 등벡터 결합 상수 \(K_{ij}=K_0\) 가 균일하다고 가정하면,$$I\,\ddot\phi_i \;=\; K_0\sum_{j\in\mathcal N(i)}\sin(\phi_j-\phi_i)$$장파장·저에너지에서는 위상차가 작으므로 \(\sin(\Delta\phi)\approx\Delta\phi\) 로 근사:$$I\,\ddot\phi_i \;\approx\; K_0\sum_{j}(\phi_j-\phi_i) \;\equ..