일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- Gravity
- aether
- Lorentz
- manifesto
- 로렌츠
- Space
- 시간
- 스핀
- 가정
- 입자
- Axiom
- lagrangian
- Bonding
- 위상
- particle
- qaether
- 라그랑지안
- 공간
- TIME
- FCC
- Axioms
- 에테르
- assumption
- 공간결핍
- symmetry
- void
- 대칭성
- 케이서
- 게이지
- SPIN
- Today
- Total
목록로렌츠 (2)
The Qaether Log
1. 서론 및 목표플랑크 스케일 격자 이산성에도 불구하고,장파장(long wavelength, \(k \ell_p \ll 1\))과 저에너지(low energy) 영역에서 기존 물리 법칙인 로렌츠 대칭(Lorentz symmetry)이 정확히 복원되어야 한다는 점입니다. 2. 위상장 \(\phi_i\)의 격자 동역학과 분산관계2-1. 이산 운동 방정식 (A12 단순화)$$\ddot{\phi}_i = K_0 \sum_{j \in N(i)} (\phi_j - \phi_i)$$여기서\(I_0\)는 국소 관성 모멘트,\(K_0\)는 인접 셀 간 위상 결합 강도,\(N(i)\)는 \(i\)번째 셀의 12개 FCC 인접 이웃 집합,\(\phi_i\)는 위상 변수.2-2. 푸리에 변환 및 분산관계푸리에 모드 $$\p..
로렌츠대칭성 회복을 확인하기 위해서 다음과 같은 테스트를 진행해보려고 한다. 1. FCC 격자 위 위상 진동자의 파동 전파 속도 \(c_\phi(\vec{q})\) 가 방향에 따라 어떻게 달라지는지 확인2. 이산 위상 진동자 → 연속 파동 방정식 수렴3. FCC 방향 텐서 평균 → 등방성 \(\delta^{\mu\nu}\) 수렴4. Void 텐서 \(\mathcal{D}_{\mu\nu}\) 의 등방 수렴성5. 상대론적 분산 관계 근사 [1단계] 이론적 근사 분석 ( 간단한 FCC 구조에서 \(\omega(\vec{q})\) 근사 유도) 선형 근사:$$\frac{d^2 \phi_i}{d\tau^2} \approx 36 \epsilon_\phi \sum_j A_{ij} (\phi_j - \phi_i)$$..