일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- symmetry
- Bonding
- assumption
- 가정
- 시간
- Axiom
- 결합패턴
- 보이드
- 라그랑지안
- Gravity
- aether
- qaether
- 게이지
- QUANTUM
- lattice
- SPIN
- gauge
- Space
- 케이서
- Axioms
- 입자
- 업쿼크
- lagrangian
- Lorentz
- particle
- FCC
- void
- 에테르
- 공간결핍
- 로렌츠
- Today
- Total
The Qaether Log
Emergent Maxwell & Dirac from Qaether (v1.0) 본문
Below is a self-contained derivation that shows how the electromagnetic (U (1)) gauge field and spin-½ matter emerge from the Qaether axioms and reduce, in the long-wavelength limit \(a=l_p\!\to\!0\), to the ordinary Maxwell and Dirac equations.
1 U (1) gauge link hidden in the phase lattice
Axiom A10 defines the gauge-covariant phase difference
$$\Delta\phi_{ij}^{\text{tot}} =\bigl(\phi_j-\phi_i\bigr)\;-\;q_e\,A_{ij}\;-\;g\,\vec{C_i}\!\cdot\!\vec{A_{ij}}, \tag{1}$$
where \(A_{ij}\) is the U (1) link potential (the SU(3) term will be ignored here) .
Keeping only the electromagnetic piece,
$$A_{ij}\;=\;\frac{1}{q_e}\,\Delta\phi_{ij}^{U(1)},\qquad A_{ij}\;\xrightarrow[a\to0]{}\;a\,\hat e_{ij}^{\mu}A_{\mu}(x), \tag{2}$$
so every lattice link already stores the continuum four-potential \(A_\mu\) up to the lattice spacing.
A local phase redefinition \(\phi_i\!\to\!\phi_i+\alpha_i\) shifts \(A_{ij}\!\to\!A_{ij}+\tfrac{\alpha_j-\alpha_i}{q_e}\); thus (1) is invariant, reproducing the usual lattice U (1) gauge symmetry.
2 Link and plaquette operators → field strength
Define the compact link variable
$$\chi_{ij}\;=\;\exp\!\bigl[i\,\Delta\phi^{\text{tot}}_{ij}\bigr]:contentReference[oaicite:1]{index=1}$$
and the plaquette operator
$$U_{\Box}\;=\;\prod_{(ij)\in\Box}\chi_{ij} =\exp(i\,\Phi_{\Box}),\qquad \Phi_{\Box}=2\pi n_{\Box},\;n_{\Box}\in\mathbb Z\; :contentReference[oaicite:2]{index=2}$$
For small flux \(|\Phi_{\Box}|\ll1\),
$$\frac12\bigl(1-\text{Re}\,U_{\Box}\bigr)\;\approx\;\frac14\,a^{4}F_{\mu\nu}F^{\mu\nu}, \tag{3}$$
identifying \(F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu\).
3 Discrete electric field and Gauss law
The lattice equation of motion for the site phase reads
$$I_i\,\ddot\phi_i =\sum_{j\in\mathcal N(i)}K_{ij}\,\Im\chi_{ij} +\dots \;:contentReference[oaicite:3]{index=3}. \tag{4}$$
Linearising \(\Im\chi_{ij}\!\simeq\!\Delta\phi_{ij}^{U(1)}\) and dividing by \(q_e a\), (4) becomes
$$\sum_{j}\frac{1}{a}\Bigl(\dot A_{ij}-\dot A_{ji}\Bigr) =\sum_{j}\!E_{ij}= \rho_i , \tag{5}$$
where \(E_{ij}\equiv-\dot A_{ij}\) is the discrete electric field and
\(\rho_i\) is the charge defined by the link-based assignment in A8 .
Equation (5) is the lattice Gauss law. Together with the Bianchi identity coming from the fact that every plaquette is a boundary of oriented links, the full set of lattice Maxwell equations is obtained.
4 Continuum limit → Maxwell action
Expanding (3) and (5) for \(a\!\to\!0\) we get
$$\partial_\nu F^{\mu\nu}=J^\mu,\qquad \partial_{[\lambda}F_{\mu\nu]}=0, \tag{6}$$
and the lattice action $$\sum_{\Box}(1-\text{Re}\,U_{\Box})$$ becomes
$$S_{EM}=\frac14\int d^{4}x\,F_{\mu\nu}F^{\mu\nu}. \tag{7}$$
Thus the Qaether link variables reproduce classical electromagnetism in the infrared.
5 Loop excitations as lattice spinors
Axiom A3/A7 supplies a loop-based Dirac equation
$$\bigl(i\,\gamma^{\circlearrowleft}\Delta^{(\phi)}_\ell-m_\ell\bigr)\Psi_\ell=0, \tag{8}$$
with the covariant difference
$$\Delta^{(\phi)}_\ell=\frac{1}{2l_pN_\ell}\sum_{(ab)\in\ell}\Im\chi_{ab} :contentReference[oaicite:5]{index=5}$$
Because every \(\chi_{ab}\) already contains the electromagnetic phase (1), (8) is gauge-covariant. In the continuum limit \(l_p\!\to\!0,\;N_\ell\!\to\!\infty\),
$$\Delta^{(\phi)}_\ell\;\longrightarrow\;a\,\gamma^\mu D_\mu,\quad \gamma^{\circlearrowleft}\!\to\!\gamma^\mu, \tag{9}$$
yielding the ordinary Dirac equation
$$(i\gamma^\mu D_\mu-m)\psi=0, \tag{10}$$
with $$D_\mu=\partial_\mu+i q_e A_\mu$$.
6 Combined Maxwell–Dirac theory
Collecting (7) and (10) the coarse-grained Qaether action is
$$S=\int d^{4}x\;\Bigl[\tfrac14 F_{\mu\nu}F^{\mu\nu} \;+\;\bar\psi(i\gamma^\mu D_\mu-m)\psi\Bigr]$$
i.e. Quantum Electrodynamics in curved-space disguise (the curved metric from §Einstein derivation enters through \(\sqrt{-g}\) factors but is irrelevant for flat-space QED).
7 Why the derivation works
- Gauge links already live on the lattice: (1) embeds \(A_\mu\) directly into phase differences.
- Plaquette flux is field strength: the closure condition on U (1) phases ensures (3).
- Site dynamics enforces Gauss law: the radial sum of electric links equals the lattice charge (5).
- Loop modes are spinors: (8) carries half-angle holonomy and remains gauge-covariant.
- Long-wavelength limit is smooth: replacing \(\Delta\phi\!\to\!a\partial\phi\) restores Lorentz symmetry and continuous derivatives.
Hence the electromagnetic and spinor sectors of Qaether are mathematically equivalent to lattice QED and converge to the continuum Maxwell + Dirac theory at scales \(\lambda\gg l_p\).
'Research Diary' 카테고리의 다른 글
From Qaether to Wilson: Deriving Lattice Gauge Theory (v1.0) (0) | 2025.06.29 |
---|---|
Einstein field equations (v1.0) (0) | 2025.06.29 |
Pyramid 결합 구조의 전하 (2) | 2025.06.26 |
Tiara(정사면체) 결합 구조의 전하 (3) | 2025.06.25 |
Pattern of 8 Gluon States (v1.0) (0) | 2025.06.15 |