목록2025/11/30 (3)
Qaether 연구일지
0. 목표 (비공식 진술)보이고 싶은 것은 다음과 같다.정리 (비공식)Qaether 이론에서 사용하는링크 위상 $\theta_\ell = \frac{\pi}{6}k_\ell$ ($k_\ell\in\mathbb Z_{12}$)플라켓 닫힘 조건 (flatness)국소 게이지 변환으로 정의된 “게이지 sector”가, 표준 $\mathbb Z_{12}$ lattice gauge theory (LGT)의 링크 변수, $\mathbb Z_{12}$ 게이지군, Wilson-type 국소 해밀토니안과 상태공간(구성 공간), 게이지군 작용과 gauge orbit, 국소 해밀토니안 및 윌슨 루프 관측량의 수준에서 동형이라는 것을 보인다.단, 여기서 동형성은 “zero-flux(flat) 섹터”에 대한 진술이며, 일반적 ..
1. 힐베르트 공간과 기본 연산자(1) 링크 자유도각 edge $e$마다 힐베르트 공간은 다음과 같이 정의된다.$$\mathcal H_e = \mathrm{span}{ |k_e\rangle \mid k_e \in \mathbb Z_{12} }$$전체 시스템의 총 힐베르트 공간은 모든 edge 공간의 텐서곱이다.$$\mathcal H = \bigotimes_{e\in E}\mathcal H_e$$각 링크에 대해 $Z_{12}$ clock/shift 연산자를 도입한다.$$Z_e |k_e\rangle = \exp\left(\frac{2\pi i}{12}k_e\right) |k_e\rangle, \qquadX_e |k_e\rangle = |k_e+1 \pmod{12}\rangle$$두 연산자 사이의 교환 관계(..
여기에서는 표준모형의 chiral 구조를 다음과 같이 Qaether 격자 위상에서 정확하게 구현해보려고 한다.\[\psi_L,\ \psi_R,\qquad\Gamma_5\psi_{L/R}=\mp\psi_{L/R}\]핵심 아이디어는 다음과 같다:FCC 격자의 정팔면체 중심들은 스스로 2-colorable bipartite graph를 이룬다.이 bipartition(A/B)이 곧 좌·우 chirality의 Z₂ 구조가 된다.이 chirality는 색전하 κ, 전하공액 C, 전하 Q, 이소스핀 T₃, 하이퍼전하 Y 모두와 독립적이며 교환한다.아래에서 이를 엄밀히 정식화한다. 13.1 FCC dual complex의 2-색칠 (A/B bipartition)FCC 정팔면체–정사면체 타일링에서 정팔면체 중심들의 집..