목록파동방정식 (2)
The Qaether Log
U(1) 위상 결합 모델에서 시작하여 장파장·저에너지 극한에서 어떻게 Maxwell 방정식이 유도되는지 단계별로 보여드리겠습니다. 1. 이산 U(1) 게이지 변수 정의위상장과 연결형 변수각 셀 i 에 위상 \(\phi_i(t)\) 를 할당하고, 인접 링크 \((i,j)\) 위에는 전자기 포텐셜의 이산 버전 \(A_{ij}(t)\) 를 도입합니다.게이지 공변 위상차는\(\Delta\phi^{\rm tot}_{ij} = (\phi_j - \phi_i) \;-\; q_e\,A_{ij}\)로 정의합니다. 여기서 \(q_e\) 는 기본 전하 단위입니다.이산 전계·자계 정의링크 전위차 \(\Delta\phi_{ij}\) 에 대응하는 전기장 성분:$$E_{ij} \;\propto\; -\frac{d}{dt}\bigl..
\(\hbar_q=\hbar\) 를 가정한 상태에서 FCC 격자의 위상 동역학이 장파장·저에너지 한계에서 어떻게 유효 연속체의 파동 방정식—즉 로렌츠 대칭성을 가지는 파동 방정식—을 재현하는지 보자. 1. 위상 동역학의 선형화원래의 비선형 방정식 (A9) 중 감쇠와 색전하 항을 무시하고, 등벡터 결합 상수 \(K_{ij}=K_0\) 가 균일하다고 가정하면,$$I\,\ddot\phi_i \;=\; K_0\sum_{j\in\mathcal N(i)}\sin(\phi_j-\phi_i)$$장파장·저에너지에서는 위상차가 작으므로 \(\sin(\Delta\phi)\approx\Delta\phi\) 로 근사:$$I\,\ddot\phi_i \;\approx\; K_0\sum_{j}(\phi_j-\phi_i) \;\equ..