목록클레이 (2)
The Qaether Log
0. 목표(Clay YM Mass Gap의 수학적 형태)문제정의: \(G=\mathrm{SU}(N)\) (주로 N=3) 4차원 순수 Yang–Mills에 대해, 격자 자외선 절단 \(a>0\)와 부피 절단 \(\Lambda(질량 갭) 어떤 비상수 게이지-불변 로컬 연산자 O 에 대해 $$\exists\,m>0,\,C(OS 복원 및 동치) OS 복원으로 얻는 물리 힐베르트공간 \(\mathcal H\)과 자가수반 해밀토니안 \(H\ge0\)이 존재하며, 진공 \(\Omega\)가 평행이동 불변·유일이고 에너지-운동량 스펙트럼이 원뿔 내부에 놓인다. 이때 (1)의 \(m>0\)은 \(\mathcal H\)에서의 스펙트럼 갭 $$\operatorname{spec}(H)\cap(0,m)=\varnothing$$..

양–밀스 이론은 비가환 게이지 장이 질량 간극을 가질 것임을 물리적으로 예측하지만, 이를 엄밀히 수학적으로 증명하는 것은 아직 난제로 남아 있다. Qaether 이론은 격자 기반의 위상 양자화와 진공 압력 구조를 통해 비가환 게이지 장에 유효 질량 스케일을 부여하므로, 수학적 증명은 아니더라도 물리학적으로 질량 간극의 존재를 설명할 수 있다고 본다. 이러한 맥락에서 양–밀스 난제를 간단히 소개하고 이해해보려고 한다. 양–밀스(Yang–Mills) 질량 간극(mass gap) 난제4차원(3+1)에서 컴팩트 단순 리군(예: SU(2), SU(3))에 대한 순수 양–밀스 이론이수학적으로 잘 정의된 양자장(QFT)으로 존재하고,바닥상태(진공) 위 스펙트럼에 0이 아닌 유한한 간극 \(m>0\)이 있음을 증명하라..