일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- void
- assumption
- Gravity
- 결합패턴
- Lorentz
- Einstein
- Space
- CHARGE
- Axiom
- symmetry
- 게이지
- 가정
- QUANTUM
- 업쿼크
- Bonding
- 케이서
- 아인슈타인
- 로렌츠대칭
- 입자
- gauge
- FCC
- lattice
- aether
- su(3)
- qaether
- particle
- Physics
- 시간
- SPIN
- color
- Today
- Total
목록우주상수 (2)
The Qaether Log
1. 진공 에너지 밀도 \(V_G\) 구하기A3에서 정의된 국소 유효 압력 모델에 따르면,$$V_G(\phi,m) \;=\; p_0\,(1 - \alpha\,m)\,\sin\!\Bigl(\tfrac{\phi}{2}\Bigr)$$여기서$$p_0 = 2\,u_{\phi,0} = \frac{3\hbar c}{2\,l_p^4}$$입니다 .진공 상태에서는 격자 결합 수 \(m_0\)와 위상각 \(\phi_0\)가 안정화를 위해 최소화되어야 하지만, \(\alpha\ll1\)이므로 \((1-\alpha m_0)\approx1\)로, 또한 최댓값을 가정하면 \(\sin(\phi_0/2)\approx1\)이라 근사할 수 있다.따라서$$\rho_{\rm vac} \simeq p_0 = \frac{3\hbar c}{2\,..
Qaether → Einstein : 전과정 일람표단계 핵심 식·정의 요지A. 격자 기초1 셀 길이 = 플랑크 길이 \(l_p\)플라켓 면적 \(A_p\sim l_p^{2}\)4-D 셀 부피 \(V_{\text{cell}} = l_p^{4}\)FCC 격자·정사각플라켓이 공간의 최소 패치B. 국소 위상 → 결핍각플라켓 위상합 $$S_p=\sum_{(ij)\in\ell_4}\Delta\phi_{ij}=4\pi n_p$$정수 \(n_p\) 가 결핍 정수C. \(n_p\) ↔ 리치 스칼라$$2\pi n_p \sime A_p R_{\text{eff}}(p)$$ D. Regge 작용 정의$$S_R=C_0\sum_p A_p n_p$$\(C_0\) 아직 미정E. 격자 → 연속 치환$$\displaystyle\sum_p..