일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- manifesto
- 에테르
- 케이서
- 위상
- Bonding
- Axioms
- lagrangian
- 가정
- assumption
- SPIN
- 라그랑지안
- Lorentz
- TIME
- 시간
- 입자
- 공간결핍
- 로렌츠
- FCC
- aether
- 게이지
- 스핀
- qaether
- Space
- Axiom
- void
- symmetry
- particle
- 대칭성
- 공간
- Gravity
- Today
- Total
목록FCC (7)
The Qaether Log

결합 패턴 ↔ 표준모형 입자 매칭 요약앞서 연구한 패턴을 바탕으로 표준모형 입자와 매칭해 봤습니다. 들어가기에 앞서 피라미드 형은 사각형 부분은 모두 \(\pi\)의 위상차를 갖지만 4기둥중 면중심과 면중심 사이의 위상차는 \(2\pi\)를 이뤄야 합니다. 이런 경우 모든 방향으로 \(4\pi\) 회전 대칭성을 갖습니다. 다음으로 정삼각형 루프는 각 변에 색상 RGB 색상전하를 대입하였습니다. 마지막으로 정팔면체 패턴은 글루볼로 매칭하였으며 이 글루볼 형태는 사실상 글루온 형태의 반복 결합을 통해 고밀도 글루온 응축장(CGC)으로 만들어 볼 수 있었으나 이번 매칭에서는 제외하였습니다. 쿼크에 매칭시킬만한 패턴은 조만간 추가하겠습니다. (※ “정합성”은 결합 규칙·위상 조건·전하 양자화 세 가지를 모두 만..

요즘은 FCC 격자 구조의 Qaether 모델을 그려놓고 결합 패턴에 대하여 이런 저런 고민을 해보고 있다.이 그림으로는 어떻게 결합하는지 파악하기가 좀 힘들겠다 싶어서 아래와 같이 구의 크기를 줄여서 패턴을 파악해 보고자 한다. 그런데 이렇게 그려두면 공이 너무 많아서 복잡해 보여서 면에 박힌것과 꼭지점에 박힌것을 구분해보자. 격자 안에서 일단 안정적인 결합을 한다고 했을때 어떤 결합이 가능할지부터 시작해보고 싶었다.이런 저런 결합을 시도해보면서 알게 된 내용은 폐곡선으로 닫힌 결합의 경우 위상차의 합이 반드시 2π가 되어야 한다는 것이다. 그렇지 않을 경우 결이 맞지 않아서 안정적인 결합을 이룰 수가 없고 그 위상차에 의해 구조 붕괴를 일으킬 수 있다.일단 폐곡선으로 닫히는 2차원 평면 결합을 우..

AbstractQaether Theory models space–time as a Planck‑scale face‑centred‑cubic (FCC) lattice whose nodes host Qaethers: discrete units that carry an activation bit, an intrinsic orientation, and a continuous U(1) phase. Bonds form only when a three‑fold criterion—activation, lattice directionality, and a \(\mathbb{Z}_6\) phase‑quantisation rule—is satisfied. Missing bonds create voids whose volum..
1. 공간 구조 및 상태 변수1.1 격자 구조기본 구조는 플랑크 길이 \(\ell_p\) 스케일의 이산 FCC 격자허용 결합 방향:\(D_{\mathrm{FCC}} = \{ \vec{d}_1, \dots, \vec{d}_{12} \} \subset \mathbb{R}^3,\quad |\vec{d}_k| = 1\) 1.2 Qaether 상태 함수각 Qaether ii의 상태:$$\Xi_i = (S_i,\ \vec{Z}_i,\ \phi_i), \quad S_i \in \{0,1\},\ \vec{Z}_i \in \mathbb{S}^2,\ \phi_i \in [0, 2\pi)$$\(S_i\): 활성 여부\(\vec{Z}_i\): 내재 회전축\(\phi_i\): 위상 변수 (관측 불가, 위상차만 관측 가능) 1...
기존에 있었던 가정들은 나의 이해가 좀 부족한 부분이 있어서 좀더 원초적으로 기술해본다.- 우리가 살고 있는 우주는 플랑크 길이 스케일의 이산적인 공 모양의 최소 공간 단위인 Qaether들의 결합망으로 구성된다. Qaether의 지름은 플랑크 길이 \(\ell_p\)와 같다.- Qaether는 가장 안정적인 구조인 FCC (face-centered cubic) 격자 구조를 기반으로 결합하며, 결합 가능한 방향은 FCC 격자의 최근접 12개 방향으로 이산 양자화된다. - Qaether는 내재적 스핀으로 다음과 같은 값만 갖는다. (단, 스핀의 값은 1이고 -1은 회전의 방향이 반대라는 뜻이다)$$S \in \{+1, 0, -1\}$$ - Qaether가 다른 Qaether와 결합을 시도할때는 spin c..

While creating the Qaether model, there was a consideration of which cell to apply the spin to initially. In other words, it is an initial value problem. However, when we create a closed space, locally speaking, this system has a discrete asymmetry. Therefore, even if it is created stably with an FCC lattice, I wonder if dynamic movements might still emerge.Moreover, if the closed space is tight..